Differentiable Neural Architecture Search with Morphism-based
Transformable Backbone Architectures
- URL: http://arxiv.org/abs/2106.07211v1
- Date: Mon, 14 Jun 2021 07:56:33 GMT
- Title: Differentiable Neural Architecture Search with Morphism-based
Transformable Backbone Architectures
- Authors: Renlong Jie and Junbin Gao
- Abstract summary: This study aims at making the architecture search process more adaptive for one-shot or online training.
It introduces a growing mechanism for differentiable neural architecture search based on network morphism.
We also implement a recently proposed two-input backbone architecture for recurrent neural networks.
- Score: 35.652234989200956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study aims at making the architecture search process more adaptive for
one-shot or online training. It is extended from the existing study on
differentiable neural architecture search, and we made the backbone
architecture transformable rather than fixed during the training process. As is
known, differentiable neural architecture search (DARTS) requires a pre-defined
over-parameterized backbone architecture, while its size is to be determined
manually. Also, in DARTS backbone, Hadamard product of two elements is not
introduced, which exists in both LSTM and GRU cells for recurrent nets. This
study introduces a growing mechanism for differentiable neural architecture
search based on network morphism. It enables growing of the cell structures
from small size towards large size ones with one-shot training. Two modes can
be applied in integrating the growing and original pruning process. We also
implement a recently proposed two-input backbone architecture for recurrent
neural networks. Initial experimental results indicate that our approach and
the two-input backbone structure can be quite effective compared with other
baseline architectures including LSTM, in a variety of learning tasks including
multi-variate time series forecasting and language modeling. On the other hand,
we find that dynamic network transformation is promising in improving the
efficiency of differentiable architecture search.
Related papers
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
Eye movement biometrics have received increasing attention thanks to its high secure identification.
Deep learning (DL) models have been recently successfully applied for eye movement recognition.
DL architecture still is determined by human prior knowledge.
We propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition.
arXiv Detail & Related papers (2024-09-22T13:11:08Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
We propose a framework to optimize for both task performance and "introspectability," a surrogate metric for aspects of interpretability.
We demonstrate that jointly optimizing for task error and introspectability leads to more disentangled and debuggable architectures that perform within error.
arXiv Detail & Related papers (2021-12-16T05:50:55Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
We present an approach called Conceptual Expansion Neural Architecture Search (CENAS)
It combines a sample-efficient, computational creativity-inspired transfer learning approach with neural architecture search.
It finds models faster than naive architecture search via transferring existing weights to approximate the parameters of the new model.
arXiv Detail & Related papers (2021-10-07T02:29:26Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Neural Architecture Search based on Cartesian Genetic Programming Coding
Method [6.519170476143571]
We propose an evolutionary approach of NAS based on CGP, called CGPNAS, to solve sentence classification task.
The experimental results show that the searched architectures are comparable with the performance of human-designed architectures.
arXiv Detail & Related papers (2021-03-12T09:51:03Z) - SAR-NAS: Skeleton-based Action Recognition via Neural Architecture
Searching [18.860051578038608]
We encode a skeleton-based action instance into a tensor and define a set of operations to build two types of network cells: normal cells and reduction cells.
Experiments on the challenging NTU RGB+D and Kinectics datasets have verified that most of the networks developed to date for skeleton-based action recognition are likely not compact and efficient.
The proposed method provides an approach to search for such a compact network that is able to achieve comparative or even better performance than the state-of-the-art methods.
arXiv Detail & Related papers (2020-10-29T03:24:15Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.