Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment
- URL: http://arxiv.org/abs/2010.15371v2
- Date: Tue, 22 Dec 2020 08:28:24 GMT
- Title: Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment
- Authors: Liangkai Zhou, Yuncong Hong, Shuai Wang, Ruihua Han, Dachuan Li, Rui
Wang, and Qi Hao
- Abstract summary: Edge intelligence is an emerging network architecture that integrates sensing, communication, computing components, and supports various machine learning applications.
Existing methods ignore two important facts: 1) different models have heterogeneous demands on training data; 2) there is a mismatch between the simulated environment and the real-world environment.
This paper proposes the learning centric wireless resource allocation scheme that maximizes the worst learning performance of multiple tasks.
- Score: 15.577056429740951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge intelligence is an emerging network architecture that integrates
sensing, communication, computing components, and supports various machine
learning applications, where a fundamental communication question is: how to
allocate the limited wireless resources (such as time, energy) to the
simultaneous model training of heterogeneous learning tasks? Existing methods
ignore two important facts: 1) different models have heterogeneous demands on
training data; 2) there is a mismatch between the simulated environment and the
real-world environment. As a result, they could lead to low learning
performance in practice. This paper proposes the learning centric wireless
resource allocation (LCWRA) scheme that maximizes the worst learning
performance of multiple tasks. Analysis shows that the optimal transmission
time has an inverse power relationship with respect to the generalization
error. Finally, both simulation and experimental results are provided to verify
the performance of the proposed LCWRA scheme and its robustness in real
implementation.
Related papers
- Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion [17.11983414681928]
Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances.
This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits.
ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.
arXiv Detail & Related papers (2023-06-23T09:54:48Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Network Support for High-performance Distributed Machine Learning [17.919773898228716]
We propose a system model that captures both learning nodes (that perform computations) and information nodes (that provide data)
We then formulate the problem of selecting (i) which learning and information nodes should cooperate to complete the learning task, and (ii) the number of iterations to perform.
We devise an algorithm, named DoubleClimb, that can find a 1+1/|I|-competitive solution with cubic worst-case complexity.
arXiv Detail & Related papers (2021-02-05T19:38:57Z) - Device Sampling for Heterogeneous Federated Learning: Theory,
Algorithms, and Implementation [24.084053136210027]
We develop a sampling methodology based on graph sequential convolutional networks (GCNs)
We find that our methodology while sampling less than 5% of all devices outperforms conventional federated learning (FedL) substantially both in terms of trained model accuracy and required resource utilization.
arXiv Detail & Related papers (2021-01-04T05:59:50Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z) - Distributed Primal-Dual Optimization for Online Multi-Task Learning [22.45069527817333]
We propose an adaptive primal-dual algorithm, which captures task-specific noise in adversarial learning and carries out a projection-free update with runtime efficiency.
Our model is well-suited to decentralized periodic-connected tasks as it allows the energy-starved or bandwidth-constraint tasks to postpone the update.
Empirical results confirm that the proposed model is highly effective on various real-world datasets.
arXiv Detail & Related papers (2020-04-02T23:36:07Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.