Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective
- URL: http://arxiv.org/abs/2105.01696v1
- Date: Mon, 3 May 2021 07:23:39 GMT
- Title: Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective
- Authors: Haoran Sun, Wenqiang Pu, Xiao Fu, Tsung-Hui Chang, Mingyi Hong
- Abstract summary: This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
- Score: 52.497514255040514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a growing interest in developing data-driven, and in
particular deep neural network (DNN) based methods for modern communication
tasks. For a few popular tasks such as power control, beamforming, and MIMO
detection, these methods achieve state-of-the-art performance while requiring
less computational efforts, less resources for acquiring channel state
information (CSI), etc. However, it is often challenging for these approaches
to learn in a dynamic environment.
This work develops a new approach that enables data-driven methods to
continuously learn and optimize resource allocation strategies in a dynamic
environment. Specifically, we consider an ``episodically dynamic" setting where
the environment statistics change in ``episodes", and in each episode the
environment is stationary. We propose to build the notion of continual learning
(CL) into wireless system design, so that the learning model can incrementally
adapt to the new episodes, {\it without forgetting} knowledge learned from the
previous episodes. Our design is based on a novel bilevel optimization
formulation which ensures certain ``fairness" across different data samples. We
demonstrate the effectiveness of the CL approach by integrating it with two
popular DNN based models for power control and beamforming, respectively, and
testing using both synthetic and ray-tracing based data sets. These numerical
results show that the proposed CL approach is not only able to adapt to the new
scenarios quickly and seamlessly, but importantly, it also maintains high
performance over the previously encountered scenarios as well.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes [8.382766344930157]
We present a distributed training approach based on the combination of Gossip Learning with adaptive optimization of the learning process.
We propose a data-driven approach to OGL management that relies on optimizing in real-time for each node.
Results suggest that our approach is highly efficient and effective in a broad spectrum of network scenarios.
arXiv Detail & Related papers (2024-04-18T09:17:46Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Double Meta-Learning for Data Efficient Policy Optimization in
Non-Stationary Environments [12.45281856559346]
We are interested in learning models of non-stationary environments, which can be framed as a multi-task learning problem.
Model-free reinforcement learning algorithms can achieve good performance in multi-task learning at a cost of extensive sampling.
While model-based approaches are among the most data efficient learning algorithms, they still struggle with complex tasks and model uncertainties.
arXiv Detail & Related papers (2020-11-21T03:19:35Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - Instance Weighted Incremental Evolution Strategies for Reinforcement
Learning in Dynamic Environments [11.076005074172516]
We propose a systematic incremental learning method for Evolution strategies (ES) in dynamic environments.
The goal is to adjust previously learned policy to a new one incrementally whenever the environment changes.
This paper introduces a family of scalable ES algorithms for RL domains that enables rapid learning adaptation to dynamic environments.
arXiv Detail & Related papers (2020-10-09T14:31:44Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.