Imaginarity-free quantum multiparameter estimation
- URL: http://arxiv.org/abs/2010.15465v3
- Date: Mon, 28 Feb 2022 01:30:21 GMT
- Title: Imaginarity-free quantum multiparameter estimation
- Authors: Jisho Miyazaki and Keiji Matsumoto
- Abstract summary: We present a class of quantum statistical models, which utilize antiunitary symmetries or, equivalently, real density matrices.
The symmetries accompany the target-independent optimal measurements for pure-state models.
We also introduce a function which measures antiunitary asymmetry of quantum statistical models as a potential tool to characterize quantumness of phase transitions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiparameter quantum estimation is made difficult by the following three
obstacles. First, incompatibility among different physical quantities poses a
limit on the attainable precision. Second, the ultimate precision is not
saturated until you discover the optimal measurement. Third, the optimal
measurement may generally depend on the target values of parameters, and thus
may be impossible to perform for unknown target states.
We present a method to circumvent these three obstacles. A class of quantum
statistical models, which utilizes antiunitary symmetries or, equivalently,
real density matrices, offers compatible multiparameter estimations. The
symmetries accompany the target-independent optimal measurements for pure-state
models. Based on this finding, we propose methods to implement antiunitary
symmetries for quantum metrology schemes. We further introduce a function which
measures antiunitary asymmetry of quantum statistical models as a potential
tool to characterize quantumness of phase transitions.
Related papers
- Achieving the Multi-parameter Quantum Cramér-Rao Bound with Antiunitary Symmetry [18.64293022108985]
We propose a novel and comprehensive approach to optimize the parameters encoding strategies with the aid of antiunitary symmetry.
The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off.
arXiv Detail & Related papers (2024-11-22T13:37:43Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Toward Incompatible Quantum Limits on Multiparameter Estimation [4.2043578689409475]
Heisenberg uncertainty principle prevents optimal measurements for incompatible parameters from being performed jointly.
A criterion proposed for multi parameter estimation provides a possible way to beat this curse.
A scheme involving high-order Hermite-Gaussian states as probes is proposed for estimating the spatial displacement and angular tilt of light.
arXiv Detail & Related papers (2023-10-11T01:24:03Z) - Tight Cram\'{e}r-Rao type bounds for multiparameter quantum metrology
through conic programming [61.98670278625053]
It is paramount to have practical measurement strategies that can estimate incompatible parameters with best precisions possible.
Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions.
We show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.
arXiv Detail & Related papers (2022-09-12T13:06:48Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Incorporating Heisenberg's Uncertainty Principle into Quantum
Multiparameter Estimation [0.44237366129994526]
We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error.
For pure quantum states, this tradeoff relation is tight, so it can reveal the true quantum limits on individual estimation errors.
We show that our approach can be readily used to derive the tradeoff between the errors of jointly estimating the phase shift and phase diffusion.
arXiv Detail & Related papers (2020-08-20T10:56:45Z) - Uncertainty and Trade-offs in Quantum Multiparameter Estimation [0.0]
Uncertainty relations in quantum mechanics express bounds on our ability to simultaneously obtain knowledge about expectation values of non-commuting observables of a quantum system.
They quantify trade-offs in accuracy between complementary pieces of information about the system.
An uncertainty relation emerges between achievable variances of the different estimators.
arXiv Detail & Related papers (2020-02-14T10:43:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.