Randomized measurements for multi-parameter quantum metrology
- URL: http://arxiv.org/abs/2502.03536v1
- Date: Wed, 05 Feb 2025 19:00:04 GMT
- Title: Randomized measurements for multi-parameter quantum metrology
- Authors: Sisi Zhou, Senrui Chen,
- Abstract summary: We show that randomized measurements perform near-optimally when estimating an arbitrary number of parameters in pure states.
The near-optimality is also shown in estimating the maximal number of parameters for three types of mixed states that are well-conditioned on its support.
- Score: 0.0
- License:
- Abstract: The optimal quantum measurements for estimating different unknown parameters in a parameterized quantum state are usually incompatible with each other. Traditional approaches to addressing the measurement incompatibility issue, such as the Holevo Cram\'{e}r--Rao bound, suffer from multiple difficulties towards practical applicability, as the optimal measurement strategies are usually state-dependent, difficult to implement and also take complex analyses to determine. Here we study randomized measurements as a new approach for multi-parameter quantum metrology. We show quantum measurements on single copies of quantum states given by 3-design perform near-optimally when estimating an arbitrary number of parameters in pure states and more generally, approximately low-rank states, whose metrological information is largely concentrated in a low-dimensional subspace. The near-optimality is also shown in estimating the maximal number of parameters for three types of mixed states that are well-conditioned on its support. Examples of fidelity estimation and Hamiltonian estimation are explicitly provided to demonstrate the power and limitation of randomized measurements in multi-parameter quantum metrology.
Related papers
- Overcoming Quantum Metrology Singularity through Sequential Measurements [0.0]
simultaneous estimation of multiple unknown parameters is the most general scenario in quantum sensing.
Here, we address the singularity issue in quantum sensing through a simple mechanism based on a sequential measurement strategy.
This is because sequential measurements, involving consecutive steps of local measurements followed by probe evolution, inherently produce correlated measurement data that grows exponentially with the number of sequential measurements.
arXiv Detail & Related papers (2025-01-06T06:00:38Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum metrology in the finite-sample regime [0.6299766708197883]
In quantum metrology, the ultimate precision of estimating an unknown parameter is often stated in terms of the Cram'er-Rao bound.
We propose to quantify the quality of a protocol by the probability of obtaining an estimate with a given accuracy.
arXiv Detail & Related papers (2023-07-12T18:00:04Z) - Variational quantum metrology for multiparameter estimation under
dephasing noise [0.8594140167290099]
We present a hybrid quantum-classical variational scheme to enhance precision in quantum metrology.
We discuss specific applications to 3D magnetic field sensing under several dephasing noise modes.
arXiv Detail & Related papers (2023-05-15T01:09:58Z) - Quantum scale estimation [0.0]
Quantum scale estimation establishes the most precise framework for the estimation of scale parameters that is allowed by the laws of quantum mechanics.
The new framework is exploited to generalise scale-invariant global thermometry, as well as to address the estimation of the lifetime of an atomic state.
On a more conceptual note, the optimal strategy is employed to construct an observable for scale parameters, an approach which may serve as a template for a more systematic search of quantum observables.
arXiv Detail & Related papers (2021-11-23T15:03:19Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Imaginarity-free quantum multiparameter estimation [0.0]
We present a class of quantum statistical models, which utilize antiunitary symmetries or, equivalently, real density matrices.
The symmetries accompany the target-independent optimal measurements for pure-state models.
We also introduce a function which measures antiunitary asymmetry of quantum statistical models as a potential tool to characterize quantumness of phase transitions.
arXiv Detail & Related papers (2020-10-29T10:21:57Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.