Momentum Entanglement for Atom Interferometry
- URL: http://arxiv.org/abs/2010.15796v2
- Date: Mon, 30 Nov 2020 10:26:30 GMT
- Title: Momentum Entanglement for Atom Interferometry
- Authors: F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani, K. Lange,
J. Peise, M. Gersemann, B. Meyer, S. Abend, N. Gaaloul, C. Schubert, D.
Schlippert, L. Santos, E. Rasel, C. Klempt
- Abstract summary: Entanglement-enhanced atom interferometers open up unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
We demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to light interferometers, the flux in cold-atom interferometers is
low and the associated shot noise large. Sensitivities beyond these limitations
require the preparation of entangled atoms in different momentum modes. Here,
we demonstrate a source of entangled atoms that is compatible with
state-of-the-art interferometers. Entanglement is transferred from the spin
degree of freedom of a Bose-Einstein condensate to well-separated momentum
modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced
atom interferometers open up unprecedented sensitivities for quantum
gradiometers or gravitational wave detectors.
Related papers
- An entanglement-enhanced atomic gravimeter [0.0]
We present a gravimeter based on Bose-Einstein condensates with a sensitivity of $-1.7+0.4_-0.5,$dB beyond the standard quantum limit.
Interferometry with Bose-Einstein condensates combined with delta-collimation minimizes atom loss in and improves scalability of the interferometer to very-long baseline atom interferometers.
arXiv Detail & Related papers (2024-04-29T12:57:01Z) - Quantum enhanced SU(1,1) matter wave interferometry in a ring cavity [0.0]
We numerically explore a novel method for performing SU (1,1) interferometry beyond the standard quantum limit.
Timescales of the interferometer operation are here given by the inverse of photonic frequency, and are orders of magnitude shorter than the timescales of collisional spin-mixing based interferometers.
arXiv Detail & Related papers (2023-09-22T16:23:19Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - A continuous, sub-Doppler-cooled atomic beam interferometer for inertial
sensing [0.0]
We present the first demonstration of an inertially sensitive atomic interferometer based on a continuous, rather than pulsed, atomic beam at sub-Doppler temperatures.
We demonstrate 30% fringe contrast in continuous, inertially sensitive interference fringes at interrogation time.
We provide a demonstration of zero-dead-time phase-shear readout of atom interferometer phase, achieving a measurement rate up to 160Hz.
arXiv Detail & Related papers (2021-12-17T18:22:37Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Integrable active atom interferometry [0.0]
We use Bethe Ansatz techniques to find exact eigenstates and eigenvalues of the Hamiltonian that models spin-changing collisions.
We study scaling properties and the interferometer's performance under the full Hamiltonian.
arXiv Detail & Related papers (2020-07-26T13:32:37Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.