論文の概要: Latent Space Oddity: Exploring Latent Spaces to Design Guitar Timbres
- arxiv url: http://arxiv.org/abs/2010.15989v2
- Date: Fri, 20 Nov 2020 00:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 00:10:28.665821
- Title: Latent Space Oddity: Exploring Latent Spaces to Design Guitar Timbres
- Title(参考訳): latent space oddity:ギターの音色設計のための潜在空間の探索
- Authors: Jason Taylor
- Abstract要約: 本稿では,ギターアンプをモデル化するための解釈可能な潜在空間を備えた新しい畳み込みネットワークアーキテクチャを提案する。
提案システムは、異なるアンプの特性を直感的に組み合わせたり減らしたりすることで、ミュージシャンが全く新しいギターの音色を設計することができる。
- 参考スコア(独自算出の注目度): 5.1525653500592
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel convolutional network architecture with an interpretable
latent space for modeling guitar amplifiers. Leveraging domain knowledge of
popular amplifiers spanning a range of styles, the proposed system intuitively
combines or subtracts characteristics of different amplifiers, allowing
musicians to design entirely new guitar timbres.
- Abstract(参考訳): ギターアンプをモデル化するための解釈可能な潜在空間を持つ新しい畳み込みネットワークアーキテクチャを提案する。
様々なスタイルにまたがる一般的なアンプのドメイン知識を活用して、提案されたシステムは異なるアンプの特性を直感的に結合または減算し、ミュージシャンが全く新しいギター音色を設計することができる。
関連論文リスト
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - ActiveRIR: Active Audio-Visual Exploration for Acoustic Environment Modeling [57.1025908604556]
環境音響モデルは、室内環境の物理的特性によって音がどのように変換されるかを表す。
本研究では,非マップ環境の環境音響モデルを効率的に構築する新しい課題であるアクティブ音響サンプリングを提案する。
我々は,音声・視覚センサストリームからの情報を利用してエージェントナビゲーションを誘導し,最適な音響データサンプリング位置を決定する強化学習ポリシーであるActiveRIRを紹介する。
論文 参考訳(メタデータ) (2024-04-24T21:30:01Z) - Expressive Acoustic Guitar Sound Synthesis with an Instrument-Specific
Input Representation and Diffusion Outpainting [9.812666469580872]
楽器への入力表現をカスタマイズした音響ギター音響合成モデルを提案する。
本研究では,長期的整合性のある音声を生成する拡散型アウトペイントを用いて提案手法を実装した。
提案モデルはベースラインモデルよりも音質が高く,よりリアルな音色を生成する。
論文 参考訳(メタデータ) (2024-01-24T14:44:01Z) - Real-time Percussive Technique Recognition and Embedding Learning for
the Acoustic Guitar [2.5291326778025143]
リアルタイム音楽情報検索(RT-MIR)は,従来の音響機器の能力を高める可能性が大きい。
本研究では,アコースティックギターとギターボディのパーカッションをブレンドしたパーカッシブフィンガースタイルの強化を目的としたRT-MIR技術を開発した。
本稿では,畳み込みニューラルネットワーク(CNN)と変分オートエンコーダ(VAE)に基づくリアルタイムギターボディパーカッション認識と埋め込み学習技術について述べる。
論文 参考訳(メタデータ) (2023-07-13T10:48:29Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - One-Shot Acoustic Matching Of Audio Signals -- Learning to Hear Music In
Any Room/ Concert Hall [3.652509571098291]
興味ある音を他の音響空間に変換できる新しいアーキテクチャを提案する。
我々のフレームワークは、ニューラルネットワークが時間周波数表現における各点の利得を調整することを可能にする。
論文 参考訳(メタデータ) (2022-10-27T19:54:05Z) - Learning Neural Acoustic Fields [110.22937202449025]
音が物理的場面でどのように伝搬するかを暗黙的に表現するニューラル・アコースティック・フィールズ(NAF)を導入する。
シーン内の音響伝搬を線形時間不変系としてモデル化することにより、NAFは全てのエミッタとリスナーの位置ペアを連続的にマッピングすることを学ぶ。
NAFの連続的な性質により、任意の場所でリスナーの空間音響を描画することができ、新しい場所での音の伝搬を予測できることを実証する。
論文 参考訳(メタデータ) (2022-04-04T17:59:37Z) - Timbre latent space: exploration and creative aspects [1.3764085113103222]
近年の研究では、教師なしモデルがオートエンコーダを用いて可逆的な音声表現を学習できることが示されている。
生成ニューラルネットワークによって、音色操作の新たな可能性が実現されている。
論文 参考訳(メタデータ) (2020-08-04T07:08:04Z) - Vector-Quantized Timbre Representation [53.828476137089325]
本稿では, スペクトル特性の近似分解を生成的特徴の集合で学習することにより, 個々の音色をより柔軟に合成することを目的とする。
音量分布の量子化表現を学習するために、大音量から切り離された離散潜在空間を持つオートエンコーダを導入する。
オーケストラ楽器と歌唱音声間の音声の翻訳結果と、ボーカルの模倣音から楽器への変換結果について詳述する。
論文 参考訳(メタデータ) (2020-07-13T12:35:45Z) - Single Image Deraining via Scale-space Invariant Attention Neural
Network [58.5284246878277]
我々は,カメラに対するレインステーキの外観の視覚的変化に対処するスケールの概念に取り組む。
本稿では,画素領域よりもコンパクトでロバストな畳み込み特徴領域のマルチスケール相関を表現することを提案する。
このようにして、機能マップの最も活発な存在を、有能な特徴として要約する。
論文 参考訳(メタデータ) (2020-06-09T04:59:26Z) - Audio inpainting with generative adversarial network [0.0]
We study the ability of Wasserstein Generative Adversarial Network (WGAN) to generate missing audio content。
我々は,WGANモデルを用いた長距離ギャップ(500ms)の音響塗装の課題に対処する。
我々は,近距離境界と長距離境界を用いた新しいWGANアーキテクチャにより,塗装部の品質を向上した。
論文 参考訳(メタデータ) (2020-03-13T09:17:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。