論文の概要: Measure Inducing Classification and Regression Trees for Functional Data
- arxiv url: http://arxiv.org/abs/2011.00046v1
- Date: Fri, 30 Oct 2020 18:49:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 16:18:04.165693
- Title: Measure Inducing Classification and Regression Trees for Functional Data
- Title(参考訳): 機能データのための分類と回帰木の誘導測定
- Authors: Edoardo Belli, Simone Vantini
- Abstract要約: 機能的データ分析の文脈における分類と回帰問題に対する木に基づくアルゴリズムを提案する。
これは、制約付き凸最適化により重み付き汎函数 L2$ 空間を学習することで達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a tree-based algorithm for classification and regression problems
in the context of functional data analysis, which allows to leverage
representation learning and multiple splitting rules at the node level,
reducing generalization error while retaining the interpretability of a tree.
This is achieved by learning a weighted functional $L^{2}$ space by means of
constrained convex optimization, which is then used to extract multiple
weighted integral features from the input functions, in order to determine the
binary split for each internal node of the tree. The approach is designed to
manage multiple functional inputs and/or outputs, by defining suitable
splitting rules and loss functions that can depend on the specific problem and
can also be combined with scalar and categorical data, as the tree is grown
with the original greedy CART algorithm. We focus on the case of scalar-valued
functional inputs defined on unidimensional domains and illustrate the
effectiveness of our method in both classification and regression tasks,
through a simulation study and four real world applications.
- Abstract(参考訳): 本稿では,ノードレベルでの表現学習と分割規則を活用し,ツリーの解釈可能性を維持しつつ一般化誤差を低減できる関数型データ解析の文脈における分類と回帰問題に対する木ベースアルゴリズムを提案する。
これは、制約付き凸最適化によって重み付き関数 $l^{2}$ 空間を学習することで実現され、入力関数から複数の重み付き積分特徴を抽出し、ツリーの内部ノードごとにバイナリスプリットを決定するために使用される。
この手法は、特定の問題に依存し得る適切な分割ルールと損失関数を定義し、木を元のgreedy CARTアルゴリズムで成長させ、スカラーデータやカテゴリデータと組み合わせることによって、複数の機能入力や出力を管理するように設計されている。
我々は,一次元領域上で定義されるスカラー値関数入力の場合に注目し,シミュレーション研究と4つの実世界応用を通して,分類・回帰タスクにおける本手法の有効性を説明する。
関連論文リスト
- Statistical Advantages of Oblique Randomized Decision Trees and Forests [0.0]
リッジ関数のフレキシブル次元縮小モデルクラスに対して一般化誤差と収束率を求める。
軸方向のモンドリアン木のリスクに対する低い境界は、これらの線形次元減少モデルに対してこれらの推定値が最適であることを示す。
論文 参考訳(メタデータ) (2024-07-02T17:35:22Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - On Single-Objective Sub-Graph-Based Mutation for Solving the
Bi-Objective Minimum Spanning Tree Problem [0.0]
我々は、進化的計算を取り入れた$mathcalNP$-hard multi-objective least- spanning tree problem (moMST)の効率的な近似に寄与する。
得られた知見に基づいて、高バイアスのサブグラフベースの突然変異演算子を設計する。
その結果,サブグラフベースの演算子が文献のベースラインアルゴリズムに勝っていることを確認した。
論文 参考訳(メタデータ) (2023-05-31T22:35:17Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
我々は,木組モデルの解釈可能な表現を開発し,その振る舞いに関する貴重な洞察を提供する。
提案モデルは,木組決定関数を近似した浅い解釈可能な木を得るのに有効である。
論文 参考訳(メタデータ) (2023-02-15T10:43:31Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Generalization Properties of Decision Trees on Real-valued and
Categorical Features [2.370481325034443]
データ分割の観点から二分決定木を再検討する。
我々は3種類の特徴を考察する: 実数値、分類的順序、分類的名目で、それぞれ異なる分割規則を持つ。
論文 参考訳(メタデータ) (2022-10-18T21:50:24Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。