Resource-Aware Pareto-Optimal Automated Machine Learning Platform
- URL: http://arxiv.org/abs/2011.00073v1
- Date: Fri, 30 Oct 2020 19:37:48 GMT
- Title: Resource-Aware Pareto-Optimal Automated Machine Learning Platform
- Authors: Yao Yang, Andrew Nam, Mohamad M. Nasr-Azadani, Teresa Tung
- Abstract summary: novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
- Score: 1.6746303554275583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce a novel platform Resource-Aware AutoML
(RA-AutoML) which enables flexible and generalized algorithms to build machine
learning models subjected to multiple objectives, as well as resource and
hard-ware constraints. RA-AutoML intelligently conducts Hyper-Parameter
Search(HPS) as well as Neural Architecture Search (NAS) to build models
optimizing predefined objectives. RA-AutoML is a versatile framework that
allows user to prescribe many resource/hardware constraints along with
objectives demanded by the problem at hand or business requirements. At its
core, RA-AutoML relies on our in-house search-engine algorithm,MOBOGA, which
combines a modified constraint-aware Bayesian Optimization and Genetic
Algorithm to construct Pareto optimal candidates. Our experiments on CIFAR-10
dataset shows very good accuracy compared to results obtained by state-of-art
neural network models, while subjected to resource constraints in the form of
model size.
Related papers
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - AutoXPCR: Automated Multi-Objective Model Selection for Time Series
Forecasting [1.0515439489916734]
We propose AutoXPCR - a novel method for automated and explainable multi-objective model selection.
Our approach leverages meta-learning to estimate any model's performance along PCR criteria, which encompass (P)redictive error, (C)omplexity, and (R)esource demand.
Our method clearly outperforms other model selection approaches - on average, it only requires 20% of computation costs for recommending models with 90% of the best-possible quality.
arXiv Detail & Related papers (2023-12-20T14:04:57Z) - AutoML-GPT: Large Language Model for AutoML [5.9145212342776805]
We have established a framework called AutoML-GPT that integrates a comprehensive set of tools and libraries.
Through a conversational interface, users can specify their requirements, constraints, and evaluation metrics.
We have demonstrated that AutoML-GPT significantly reduces the time and effort required for machine learning tasks.
arXiv Detail & Related papers (2023-09-03T09:39:49Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
A simple yet powerful approach is to operate on small subsets of data.
In this work, we propose a generic coreset framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem.
arXiv Detail & Related papers (2021-09-26T09:08:38Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
We propose the first robust AutoML framework, Robusta--based on reinforcement learning (RL)
We show that the framework is able to improve the model robustness by up to 22% while maintaining competitive accuracy on benign samples.
arXiv Detail & Related papers (2021-01-15T03:12:29Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.