論文の概要: Temporal Smoothing for 3D Human Pose Estimation and Localization for
Occluded People
- arxiv url: http://arxiv.org/abs/2011.00250v1
- Date: Sat, 31 Oct 2020 11:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 05:05:48.090613
- Title: Temporal Smoothing for 3D Human Pose Estimation and Localization for
Occluded People
- Title(参考訳): 被占領者の3次元姿勢推定と位置推定のための時間的平滑化
- Authors: Marton Veges, Andras Lorincz
- Abstract要約: 本稿では,スムーズで有効な軌道を時間内に生成し,可視性にギャップを埋めるためのエネルギー最小化手法を提案する。
さらに,MuCo-3DHPデータセットの時間拡張である合成MuCo-Tempデータセットを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-person pose estimation actors can be heavily occluded, even become
fully invisible behind another person. While temporal methods can still predict
a reasonable estimation for a temporarily disappeared pose using past and
future frames, they exhibit large errors nevertheless. We present an energy
minimization approach to generate smooth, valid trajectories in time, bridging
gaps in visibility. We show that it is better than other interpolation based
approaches and achieves state of the art results. In addition, we present the
synthetic MuCo-Temp dataset, a temporal extension of the MuCo-3DHP dataset. Our
code is made publicly available.
- Abstract(参考訳): マルチパーソンのポーズ推定では、アクターは無視され、他の人の後ろで完全に見えなくなる。
時間的手法は、過去と将来のフレームを使って一時的に消滅したポーズの妥当な推定を予測できるが、それでも大きなエラーを示す。
本稿では,スムーズで有効な軌道を生成するためのエネルギー最小化手法を提案する。
他の補間ベースのアプローチよりも優れており、最先端の成果が得られることを示す。
さらに,MuCo-3DHPデータセットの時間拡張である合成MuCo-Tempデータセットを提案する。
私たちのコードは公開されています。
関連論文リスト
- STRIDE: Single-video based Temporally Continuous Occlusion Robust 3D Pose Estimation [27.854074900345314]
ビデオに先立って人間の動作に適合する新しいテストタイムトレーニング(TTT)手法であるSTRIDEを提案する。
筆者らのフレームワークは,モデルに依存しない柔軟性を示し,既製の3Dポーズ推定手法を用いて,堅牢性と時間的整合性を向上させる。
我々は、Occluded Human3.6M、Human3.6M、OCMotionのような挑戦的なデータセットに関する包括的な実験を通じてSTRIDEの有効性を検証する。
論文 参考訳(メタデータ) (2023-12-24T11:05:10Z) - TEMPO: Efficient Multi-View Pose Estimation, Tracking, and Forecasting [27.3359362364858]
本稿では,頑健な時間的表現を学習する効率的な多視点ポーズ推定モデルを提案する。
我々のモデルは微調整なしでデータセットをまたいで一般化することができる。
論文 参考訳(メタデータ) (2023-09-14T17:56:30Z) - Occluded Human Body Capture with Self-Supervised Spatial-Temporal Motion
Prior [7.157324258813676]
私たちは、トレーニングとテストの両方に使用できる最初の3Dクローズドモーションデータセット(OcMotion)を構築します。
次に、空間時間層は、関節レベルの相関を学習するために設計される。
実験結果から,提案手法は,映像から高精度で一貫性のある人間の動きを生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-12T08:15:11Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
ラベル付きデータが豊富である場合, 単一画像からの3次元ポーズ推定に対する改良されたアプローチは, 極めて効果的である。
最近の注目の多くは、セミと(あるいは)弱い教師付き学習に移行している。
本稿では,多視点の幾何学的制約を,識別可能な三角測量を用いて課し,ラベルがない場合の自己監督の形式として用いることを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:11:54Z) - P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose
Estimation [78.83305967085413]
本稿では,2次元から3次元のポーズ推定作業のためのP-STMOモデルを提案する。
提案手法は,パラメータが少なく,計算オーバーヘッドが少なく,最先端の手法より優れている。
論文 参考訳(メタデータ) (2022-03-15T04:00:59Z) - Improving Robustness and Accuracy via Relative Information Encoding in
3D Human Pose Estimation [59.94032196768748]
位置および時間的拡張表現を出力する相対情報符号化法を提案する。
提案手法は2つの公開データセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-07-29T14:12:19Z) - Self-Attentive 3D Human Pose and Shape Estimation from Videos [82.63503361008607]
3D人間のポーズと形状推定のためのビデオベースの学習アルゴリズムを紹介します。
ビデオの時間情報を利用して自己着脱モジュールを提案する。
本手法を3DPW, MPI-INF-3DHP, Human3.6Mデータセット上で評価した。
論文 参考訳(メタデータ) (2021-03-26T00:02:19Z) - Unsupervised Learning on Monocular Videos for 3D Human Pose Estimation [121.5383855764944]
コントラッシブな自己教師学習を用いて、シングルビュービデオからリッチな潜伏ベクトルを抽出する。
また,CSSを時間変化の特徴のみに適用すると同時に,入力を再構築し,近辺と遠方の特徴間の段階的な遷移を促すことにより,リッチな潜伏空間が得られることを示す。
本手法は他の教師なしシングルビュー手法よりも優れており,マルチビュー手法の性能と一致している。
論文 参考訳(メタデータ) (2020-12-02T20:27:35Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
マルチパーソナライズされた3次元ポーズ推定手法における特徴マッチングと深さ推定のコアは、エピポーラ制約である。
スパサーの群衆シーンにおけるこの定式化の良好なパフォーマンスにもかかわらず、その効果はより密集した群衆の状況下でしばしば挑戦される。
本稿では,マルチパーソン3次元ポーズ推定式から脱却し,群衆ポーズ推定として再編成する。
論文 参考訳(メタデータ) (2020-07-21T17:59:36Z) - A Graph Attention Spatio-temporal Convolutional Network for 3D Human
Pose Estimation in Video [7.647599484103065]
我々は,アテンション機構を用いた局所的グローバル空間情報のモデリングにより,人間の骨格における制約の学習を改善する。
提案手法は, 奥行きのあいまいさと自己閉塞性を効果的に軽減し, 半上半身推定を一般化し, 2次元から3次元映像のポーズ推定における競合性能を実現する。
論文 参考訳(メタデータ) (2020-03-11T14:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。