LandmarkGAN: Synthesizing Faces from Landmarks
- URL: http://arxiv.org/abs/2011.00269v2
- Date: Sat, 6 Feb 2021 04:19:53 GMT
- Title: LandmarkGAN: Synthesizing Faces from Landmarks
- Authors: Pu Sun, Yuezun Li, Honggang Qi and Siwei Lyu
- Abstract summary: We describe a new method, namely LandmarkGAN, to synthesize faces based on facial landmarks as input.
Our method is able to transform a set of facial landmarks into new faces of different subjects, while retains the same facial expression and orientation.
- Score: 43.53204737135101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face synthesis is an important problem in computer vision with many
applications. In this work, we describe a new method, namely LandmarkGAN, to
synthesize faces based on facial landmarks as input. Facial landmarks are a
natural, intuitive, and effective representation for facial expressions and
orientations, which are independent from the target's texture or color and
background scene. Our method is able to transform a set of facial landmarks
into new faces of different subjects, while retains the same facial expression
and orientation. Experimental results on face synthesis and reenactments
demonstrate the effectiveness of our method.
Related papers
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
Existing facial expression recognition methods typically fine-tune a pre-trained visual encoder using discrete labels.
We observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations.
We propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation.
arXiv Detail & Related papers (2024-09-13T07:28:57Z) - ComFace: Facial Representation Learning with Synthetic Data for Comparing Faces [5.07975834105566]
We propose a facial representation learning method using synthetic images for comparing faces, called ComFace.
For effective representation learning, ComFace aims to acquire two feature representations, i.e., inter-personal facial differences and intra-personal facial changes.
Our ComFace, trained using only synthetic data, achieves comparable to or better transfer performance than general pre-training and state-of-the-art representation learning methods trained using real images.
arXiv Detail & Related papers (2024-05-25T02:44:07Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Learning Facial Representations from the Cycle-consistency of Face [23.23272327438177]
We introduce cycle-consistency in facial characteristics as free supervisory signal to learn facial representations from unlabeled facial images.
The learning is realized by superimposing the facial motion cycle-consistency and identity cycle-consistency constraints.
Our approach is competitive with those of existing methods, demonstrating the rich and unique information embedded in the disentangled representations.
arXiv Detail & Related papers (2021-08-07T11:30:35Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
We propose a multi-stage Progressive Upsampling and Inpainting Generative Adversarial Network, dubbed Pro-UIGAN.
It exploits facial geometry priors to replenish and upsample (8*) the occluded and tiny faces.
Pro-UIGAN achieves visually pleasing HR faces, reaching superior performance in downstream tasks.
arXiv Detail & Related papers (2021-08-02T02:29:24Z) - Comprehensive Facial Expression Synthesis using Human-Interpretable
Language [33.11402372756348]
We propose a new facial expression synthesis model from language-based facial expression description.
Our method can synthesize the facial image with detailed expressions.
In addition, effectively embedding language features on facial features, our method can control individual word to handle each part of facial movement.
arXiv Detail & Related papers (2020-07-16T07:28:25Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
We propose a framework called InterFaceGAN to interpret the disentangled face representation learned by state-of-the-art GAN models.
We first find that GANs learn various semantics in some linear subspaces of the latent space.
We then conduct a detailed study on the correlation between different semantics and manage to better disentangle them via subspace projection.
arXiv Detail & Related papers (2020-05-18T18:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.