SynFace: Face Recognition with Synthetic Data
- URL: http://arxiv.org/abs/2108.07960v1
- Date: Wed, 18 Aug 2021 03:41:54 GMT
- Title: SynFace: Face Recognition with Synthetic Data
- Authors: Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei Liu, Dacheng Tao
- Abstract summary: We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
- Score: 83.15838126703719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent success of deep neural networks, remarkable progress has been
achieved on face recognition. However, collecting large-scale real-world
training data for face recognition has turned out to be challenging, especially
due to the label noise and privacy issues. Meanwhile, existing face recognition
datasets are usually collected from web images, lacking detailed annotations on
attributes (e.g., pose and expression), so the influences of different
attributes on face recognition have been poorly investigated. In this paper, we
address the above-mentioned issues in face recognition using synthetic face
images, i.e., SynFace. Specifically, we first explore the performance gap
between recent state-of-the-art face recognition models trained with synthetic
and real face images. We then analyze the underlying causes behind the
performance gap, e.g., the poor intra-class variations and the domain gap
between synthetic and real face images. Inspired by this, we devise the SynFace
with identity mixup (IM) and domain mixup (DM) to mitigate the above
performance gap, demonstrating the great potentials of synthetic data for face
recognition. Furthermore, with the controllable face synthesis model, we can
easily manage different factors of synthetic face generation, including pose,
expression, illumination, the number of identities, and samples per identity.
Therefore, we also perform a systematically empirical analysis on synthetic
face images to provide some insights on how to effectively utilize synthetic
data for face recognition.
Related papers
- Unveiling Synthetic Faces: How Synthetic Datasets Can Expose Real Identities [22.8742248559748]
We show that in 6 state-of-the-art synthetic face recognition datasets, several samples from the original real dataset are leaked.
This paper is the first work which shows the leakage from training data of generator models into the generated synthetic face recognition datasets.
arXiv Detail & Related papers (2024-10-31T15:17:14Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
Large face datasets are primarily sourced from web-based images, lacking explicit user consent.
In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models.
arXiv Detail & Related papers (2024-04-04T15:45:25Z) - VIGFace: Virtual Identity Generation Model for Face Image Synthesis [13.81887339529775]
We propose VIGFace, a novel framework capable of generating synthetic facial images.
It allows for creating virtual facial images without concerns about portrait rights.
It serves as an effective augmentation method by incorporating real existing images.
arXiv Detail & Related papers (2024-03-13T06:11:41Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
State-of-the-art face recognition networks are often computationally expensive and cannot be used for mobile applications.
We propose a new framework to train lightweight face recognition models by distilling the knowledge of a pretrained teacher face recognition model using synthetic data.
We use synthetic face images without identity labels, mitigating the problems in the intra-class variation generation of synthetic datasets.
arXiv Detail & Related papers (2023-08-28T19:15:27Z) - IDiff-Face: Synthetic-based Face Recognition through Fizzy
Identity-Conditioned Diffusion Models [15.217324893166579]
Synthetic datasets have emerged as a promising alternative to privacy-sensitive authentic data for face recognition development.
IDiff-Face is a novel approach based on conditional latent diffusion models for synthetic identity generation with realistic identity variations for face recognition training.
arXiv Detail & Related papers (2023-08-09T14:48:31Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
We propose a framework called InterFaceGAN to interpret the disentangled face representation learned by state-of-the-art GAN models.
We first find that GANs learn various semantics in some linear subspaces of the latent space.
We then conduct a detailed study on the correlation between different semantics and manage to better disentangle them via subspace projection.
arXiv Detail & Related papers (2020-05-18T18:01:22Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
Existing methods decompose a face image into three components (albedo, normal, and illumination) by supervised training on synthetic data.
We propose a weakly supervised training approach to train our model on real face videos, based on the assumption of consistency of albedo and normal.
Our network is trained on both real and synthetic data, benefiting from both.
arXiv Detail & Related papers (2020-03-26T17:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.