Towards atomic-resolution quantum measurements with coherently-shaped
free electrons
- URL: http://arxiv.org/abs/2011.00348v1
- Date: Sat, 31 Oct 2020 19:54:06 GMT
- Title: Towards atomic-resolution quantum measurements with coherently-shaped
free electrons
- Authors: Ron Ruimy, Alexey Gorlach, Chen Mechel, Nicholas Rivera and Ido
Kaminer
- Abstract summary: We propose a technique that leverages free electrons that are coherently-shaped by laser pulses to measure quantum coherence in materials.
We show how the energy spectrum of laser-shaped electrons enables measuring the qubit Block-sphere state and decoherence time.
Our scheme could be implemented in an ultrafast transmission electron microscope (UTEM), opening the way towards the full characterization of the state of quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Free electrons provide a powerful tool to probe material properties at
atomic-scale spatial resolution. Recent advances in ultrafast electron
microscopy enable the manipulation of free electron wavefunctions using laser
pulses. It would be of great importance if one could combine the spatial
resolution of electron probes with the ability of laser pulses to probe
coherent phenomena in quantum systems. To this end, we propose a novel
technique that leverages free electrons that are coherently-shaped by laser
pulses to measure quantum coherence in materials. Developing a quantum theory
of electron-qubit interactions in materials, we show how the energy spectrum of
laser-shaped electrons enables measuring the qubit Block-sphere state and
decoherence time (T2). Finally, we present how such shaped electrons can detect
and quantify superradiance from multiple qubits. Our scheme could be
implemented in an ultrafast transmission electron microscope (UTEM), opening
the way towards the full characterization of the state of quantum systems at
atomic-scale resolution.
Related papers
- Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - On quantum free-electron laser: Superradience [91.3755431537592]
An exact expression for the evolution of the laser amplitude is obtained.
Reliable conditions for the superradiance of the high-gained laser are discussed.
arXiv Detail & Related papers (2022-03-27T15:07:09Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Quantum states interrogation using a pre-shaped free electron
wavefunction [1.5078167156049138]
We present a theory for interrogation of the quantum state of a two-level system (TLS) based on a free-electron - bound-electron resonant interaction scheme.
The exceptional advantage of this scheme over laser-based ones is the atomic-scale spatial resolution of addressing individual TLS targets.
arXiv Detail & Related papers (2021-11-25T15:37:56Z) - Quantum-coherent light-electron interaction in an SEM [0.0]
We show the quantum coherent coupling between electrons and light in a scanning electron microscope.
Scanning electron microscopes afford the yet-unexplored electron energies from 0.5 to 30 keV.
Our results will allow imaging with low-energy electrons and attosecond time resolution.
arXiv Detail & Related papers (2021-10-02T09:14:14Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Integrated photonics enables continuous-beam electron phase modulation [0.0]
Integrated photonics can efficiently interface free electrons and light.
We demonstrate coherent phase modulation of an electron beam using a silicon nitride microresonator driven by a continuous-wave laser.
Our results highlight the potential of integrated photonics to efficiently interface free electrons and light.
arXiv Detail & Related papers (2021-05-08T16:17:01Z) - Ultrafast non-destructive measurement of the quantum state of light
using free electrons [0.0]
We propose using free electrons for quantum-optical detection of the complete quantum state of light.
We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics.
Our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.
arXiv Detail & Related papers (2020-12-22T14:59:31Z) - Control of quantum electrodynamical processes by shaping electron
wavepackets [0.0]
We show that free-electron wave-shaping can be used to engineer quantum interferences that alter the results of scattering processes in quantum electrodynamical processes.
As an example, we apply our concept to Bremsstrahlung, a ubiquitous phenomenon that occurs in X-ray sources for state-of-the-art medical imaging.
arXiv Detail & Related papers (2020-11-02T04:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.