Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope
- URL: http://arxiv.org/abs/2408.06936v1
- Date: Tue, 13 Aug 2024 14:45:46 GMT
- Title: Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope
- Authors: Diego Acosta Coden, Omar Osenda, Alejandro Ferrón,
- Abstract summary: The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing. In this work, we show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM). Our results show that the initialization and transmission of a single excitation state is achievable in short times, and with high fidelity. Our study uses spin Hamiltonians to model the magnetic atoms chain, the tip of the STM, the interaction between it and the atoms chain and the electronic response to the fields applied by the tip, employing sets of parameters compatible with the latest experiments and ab initio calculations. The time dynamical evolution is considered in the full Hilbert space and the control pulses frequencies exerted by the tip of the microscope are within the reach of present day technology.
Related papers
- Non-resonant electric quantum control of individual on-surface spins [41.94295877935867]
Quantum control techniques play an important role in manipulating and harnessing the properties of different quantum systems.
We propose to achieve quantum control over a single on-surface atomic spin using Landau-Zener-St"uckelberg-Majorana (LZSM) interferometry.
arXiv Detail & Related papers (2024-04-29T18:23:30Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
Entanglement is a key property in the development of quantum technologies.
We present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians.
arXiv Detail & Related papers (2022-09-18T08:15:49Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Harnessing the Quantum Behavior of Spins on Surfaces [5.934931737701265]
Single atoms and molecules on surfaces are investigated by physicists, chemists, and material scientists in search of novel electronic and magnetic functionalities.
In 2015, it was first clearly demonstrated that individual spins on a surface can be coherently controlled and read out in an all-electrical fashion.
This review aims to illustrate the essential ingredients that allow the quantum operations of single spins on surfaces.
arXiv Detail & Related papers (2021-12-29T09:47:06Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.