Pose Estimation of Specular and Symmetrical Objects
- URL: http://arxiv.org/abs/2011.00372v1
- Date: Sat, 31 Oct 2020 22:08:46 GMT
- Title: Pose Estimation of Specular and Symmetrical Objects
- Authors: Jiaming Hu, Hongyi Ling, Priyam Parashar, Aayush Naik and Henrik
Christensen
- Abstract summary: In the robotic industry, specular and textureless metallic components are ubiquitous.
The 6D pose estimation of such objects with only a monocular RGB camera is difficult because of the absence of rich texture features.
This paper proposes a data-driven solution to estimate the 6D pose of specular objects for grasping them.
- Score: 0.719973338079758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the robotic industry, specular and textureless metallic components are
ubiquitous. The 6D pose estimation of such objects with only a monocular RGB
camera is difficult because of the absence of rich texture features.
Furthermore, the appearance of specularity heavily depends on the camera
viewpoint and environmental light conditions making traditional methods, like
template matching, fail. In the last 30 years, pose estimation of the specular
object has been a consistent challenge, and most related works require massive
knowledge modeling effort for light setups, environment, or the object surface.
On the other hand, recent works exhibit the feasibility of 6D pose estimation
on a monocular camera with convolutional neural networks(CNNs) however they
mostly use opaque objects for evaluation. This paper provides a data-driven
solution to estimate the 6D pose of specular objects for grasping them,
proposes a cost function for handling symmetry, and demonstrates experimental
results showing the system's feasibility.
Related papers
- Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
arXiv Detail & Related papers (2024-01-04T16:57:56Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
This work explores reconstructing general real-world objects from a few images without known camera poses or object categories.
The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation.
Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence.
arXiv Detail & Related papers (2022-12-08T18:59:02Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation
with Photometrically Challenging Objects [45.31344700263873]
We introduce a multimodal dataset for category-level object pose estimation with photometrically challenging objects termed PhoCaL.
PhoCaL comprises 60 high quality 3D models of household objects over 8 categories including highly reflective, transparent and symmetric objects.
It ensures sub-millimeter accuracy of the pose for opaque textured, shiny and transparent objects, no motion blur and perfect camera synchronisation.
arXiv Detail & Related papers (2022-05-18T09:21:09Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6D object pose estimation networks are limited in their capability to scale to large numbers of object instances.
In this work, we study a new open set problem; the few-shot 6D object poses estimation: estimating the 6D pose of an unknown object by a few support views without extra training.
arXiv Detail & Related papers (2022-03-28T10:31:29Z) - VIPose: Real-time Visual-Inertial 6D Object Pose Tracking [3.44942675405441]
We introduce a novel Deep Neural Network (DNN) called VIPose to address the object pose tracking problem in real-time.
The key contribution is the design of a novel DNN architecture which fuses visual and inertial features to predict the objects' relative 6D pose.
The approach presents accuracy performances comparable to state-of-the-art techniques, but with additional benefit to be real-time.
arXiv Detail & Related papers (2021-07-27T06:10:23Z) - Object detection and Autoencoder-based 6D pose estimation for highly
cluttered Bin Picking [14.076644545879939]
We propose a framework for pose estimation in highly cluttered scenes with small objects.
In this work, we compare synthetic data generation approaches for object detection and pose estimation.
We introduce a pose filtering algorithm that determines the most accurate estimated poses.
arXiv Detail & Related papers (2021-06-15T11:01:07Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - SHREC 2020 track: 6D Object Pose Estimation [26.4781238445338]
6D pose estimation is crucial for augmented reality, virtual reality, robotic manipulation and visual navigation.
Different pose estimation methods have different strengths and weaknesses, depending on feature representations and scene contents.
Existing 3D datasets that are used for data-driven methods to estimate 6D poses have limited view angles and low resolution.
arXiv Detail & Related papers (2020-10-19T09:45:42Z) - CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
Images With Self-Supervised Learning [74.53664270194643]
Modern monocular 6D pose estimation methods can only cope with a handful of object instances.
We propose a novel method for class-level monocular 6D pose estimation, coupled with metric shape retrieval.
We experimentally demonstrate that we can retrieve precise 6D poses and metric shapes from a single RGB image.
arXiv Detail & Related papers (2020-03-12T15:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.