Fit-NGP: Fitting Object Models to Neural Graphics Primitives
- URL: http://arxiv.org/abs/2401.02357v1
- Date: Thu, 4 Jan 2024 16:57:56 GMT
- Title: Fit-NGP: Fitting Object Models to Neural Graphics Primitives
- Authors: Marwan Taher, Ignacio Alzugaray, Andrew J. Davison
- Abstract summary: We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
- Score: 19.513102875891775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 3D object pose estimation is key to enabling many robotic
applications that involve challenging object interactions. In this work, we
show that the density field created by a state-of-the-art efficient radiance
field reconstruction method is suitable for highly accurate and robust pose
estimation for objects with known 3D models, even when they are very small and
with challenging reflective surfaces. We present a fully automatic object pose
estimation system based on a robot arm with a single wrist-mounted camera,
which can scan a scene from scratch, detect and estimate the 6-Degrees of
Freedom (DoF) poses of multiple objects within a couple of minutes of
operation. Small objects such as bolts and nuts are estimated with accuracy on
order of 1mm.
Related papers
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
arXiv Detail & Related papers (2024-07-14T21:02:55Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research.
We provide 3D scanned textured models of toy grocery objects, as well as RGBD images of the objects in challenging, cluttered scenes.
Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses that were verified empirically to be accurate to within a few millimeters.
We also propose a new pose evaluation metric called ADD-H based upon the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration.
arXiv Detail & Related papers (2022-03-11T01:19:04Z) - Precise Object Placement with Pose Distance Estimations for Different
Objects and Grippers [7.883179102580462]
Our method estimates multiple 6D object poses together with an object class, a pose distance for object pose estimation, and a pose distance from a target pose for object placement.
By incorporating model knowledge into the system, our approach has higher success rates for grasping than state-of-the-art model-free approaches.
arXiv Detail & Related papers (2021-10-03T12:18:59Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Dense Object Nets (DONs) by Florence, Manuelli and Tedrake introduced dense object descriptors as a novel visual object representation for the robotics community.
In this paper we show that given a 3D model of an object, we can generate its descriptor space image, which allows for supervised training of DONs.
We compare the training methods on generating 6D grasps for industrial objects and show that our novel supervised training approach improves the pick-and-place performance in industry-relevant tasks.
arXiv Detail & Related papers (2021-02-16T11:40:12Z) - Continuous close-range 3D object pose estimation [1.4502611532302039]
Vision-based 3D pose estimation is a necessity to accurately handle objects that might not be placed at fixed positions.
In this paper, we present a 3D pose estimation method based on a gradient-ascend particle filter.
Thereby, we can apply this method online during task execution to save valuable cycle time.
arXiv Detail & Related papers (2020-10-02T07:48:17Z) - Single View Metrology in the Wild [94.7005246862618]
We present a novel approach to single view metrology that can recover the absolute scale of a scene represented by 3D heights of objects or camera height above the ground.
Our method relies on data-driven priors learned by a deep network specifically designed to imbibe weakly supervised constraints from the interplay of the unknown camera with 3D entities such as object heights.
We demonstrate state-of-the-art qualitative and quantitative results on several datasets as well as applications including virtual object insertion.
arXiv Detail & Related papers (2020-07-18T22:31:33Z) - MoreFusion: Multi-object Reasoning for 6D Pose Estimation from
Volumetric Fusion [19.034317851914725]
We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision.
Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves.
We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video.
arXiv Detail & Related papers (2020-04-09T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.