Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization
- URL: http://arxiv.org/abs/2011.00399v1
- Date: Sun, 1 Nov 2020 01:51:44 GMT
- Title: Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization
- Authors: Zhaoen Su, Chao Wang, Henggang Cui, Nemanja Djuric, Carlos
Vallespi-Gonzalez, David Bradley
- Abstract summary: A commonly-used representation for motion prediction of actors is a sequence of waypoints for each actor at discrete future time-points.
This approach is simple and flexible, but it can exhibit unrealistic higher-order derivatives and approximation errors at intermediate time steps.
We propose a simple and general representation for temporally continuous trajectory prediction that is based on trajectory parameterization.
- Score: 12.896275507449936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A commonly-used representation for motion prediction of actors is a sequence
of waypoints (comprising positions and orientations) for each actor at discrete
future time-points. While this approach is simple and flexible, it can exhibit
unrealistic higher-order derivatives (such as acceleration) and approximation
errors at intermediate time steps. To address this issue we propose a simple
and general representation for temporally continuous probabilistic trajectory
prediction that is based on polynomial trajectory parameterization. We evaluate
the proposed representation on supervised trajectory prediction tasks using two
large self-driving data sets. The results show realistic higher-order
derivatives and better accuracy at interpolated time-points, as well as the
benefits of the inferred noise distributions over the trajectories. Extensive
experimental studies based on existing state-of-the-art models demonstrate the
effectiveness of the proposed approach relative to other representations in
predicting the future motions of vehicle, bicyclist, and pedestrian traffic
actors.
Related papers
- AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise
Prediction [9.385936248154987]
Trajectory prediction is an important task that involves modeling the indeterminate nature of traffic actors to forecast future trajectories.
We propose a novel approach called SSWNP (Self-Supervised Waypoint Noise Prediction)
In our approach, we first create clean and noise-augmented views of past observed trajectories across the spatial domain of waypoints.
arXiv Detail & Related papers (2023-11-26T19:03:41Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.
A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.
Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
We present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner.
We employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy.
We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets.
arXiv Detail & Related papers (2023-10-23T05:04:23Z) - Improving Trajectory Prediction in Dynamic Multi-Agent Environment by
Dropping Waypoints [9.385936248154987]
Motion prediction systems must learn spatial and temporal information from the past to forecast the future trajectories of the agent.
We propose Temporal Waypoint Dropping (TWD) that explicitly incorporates temporal dependencies during the training of a trajectory prediction model.
We evaluate our proposed approach on three datasets: NBA Sports VU, ETH-UCY, and TrajNet++.
arXiv Detail & Related papers (2023-09-29T15:48:35Z) - Leveraging Future Relationship Reasoning for Vehicle Trajectory
Prediction [27.614778027454417]
We propose a novel approach that uses lane information to predict a future relationship among agents.
To obtain a coarse future motion of agents, our method first predicts the probability of lane-level waypoint occupancy of vehicles.
We then utilize the temporal probability of passing adjacent lanes for each agent pair, assuming that agents passing adjacent lanes will highly interact.
arXiv Detail & Related papers (2023-05-24T04:33:28Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.