SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction
- URL: http://arxiv.org/abs/2104.01528v1
- Date: Sun, 4 Apr 2021 03:17:42 GMT
- Title: SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction
- Authors: Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Mo Zhou,
Zhenxing Niu, Gang Hua
- Abstract summary: We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
- Score: 64.16212996247943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian trajectory prediction is a key technology in autopilot, which
remains to be very challenging due to complex interactions between pedestrians.
However, previous works based on dense undirected interaction suffer from
modeling superfluous interactions and neglect of trajectory motion tendency,
and thus inevitably result in a considerable deviance from the reality. To cope
with these issues, we present a Sparse Graph Convolution Network~(SGCN) for
pedestrian trajectory prediction. Specifically, the SGCN explicitly models the
sparse directed interaction with a sparse directed spatial graph to capture
adaptive interaction pedestrians. Meanwhile, we use a sparse directed temporal
graph to model the motion tendency, thus to facilitate the prediction based on
the observed direction. Finally, parameters of a bi-Gaussian distribution for
trajectory prediction are estimated by fusing the above two sparse graphs. We
evaluate our proposed method on the ETH and UCY datasets, and the experimental
results show our method outperforms comparative state-of-the-art methods by 9%
in Average Displacement Error(ADE) and 13% in Final Displacement Error(FDE).
Notably, visualizations indicate that our method can capture adaptive
interactions between pedestrians and their effective motion tendencies.
Related papers
- Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
We propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow)
Our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors.
Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-21T07:29:24Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent
Class Embedding [12.839645409931407]
Trajectory prediction of road users in real-world scenarios is challenging because their movement patterns are complex.
Previous pedestrian-oriented works have been successful in modelling the complex interactions among pedestrians, but fail in predicting trajectories when other types of road users are involved.
We propose Multiclass-SGCN, a sparse graph convolution network based approach for multi-class trajectory prediction.
arXiv Detail & Related papers (2022-06-30T13:28:53Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph
Convolutional Network for Multi-class Trajectory Prediction [9.238700679836855]
We introduce class information into a graph convolutional neural network to better predict the trajectory of an individual.
We propose new metrics, known as Average2 Displacement Error (aADE) and Average Final Displacement Error (aFDE)
It consistently shows superior performance to the state-of-the-arts in existing and the newly proposed metrics.
arXiv Detail & Related papers (2021-08-10T15:02:50Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
We propose a novel CNN-based spatial-temporal graph framework GraphCNT to support more efficient and accurate trajectory predictions.
In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window.
Our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
arXiv Detail & Related papers (2020-03-16T12:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.