Unsupervised Metric Relocalization Using Transform Consistency Loss
- URL: http://arxiv.org/abs/2011.00608v1
- Date: Sun, 1 Nov 2020 19:24:27 GMT
- Title: Unsupervised Metric Relocalization Using Transform Consistency Loss
- Authors: Mike Kasper, Fernando Nobre, Christoffer Heckman, Nima Keivan
- Abstract summary: Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
- Score: 66.19479868638925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training networks to perform metric relocalization traditionally requires
accurate image correspondences. In practice, these are obtained by restricting
domain coverage, employing additional sensors, or capturing large multi-view
datasets. We instead propose a self-supervised solution, which exploits a key
insight: localizing a query image within a map should yield the same absolute
pose, regardless of the reference image used for registration. Guided by this
intuition, we derive a novel transform consistency loss. Using this loss
function, we train a deep neural network to infer dense feature and saliency
maps to perform robust metric relocalization in dynamic environments. We
evaluate our framework on synthetic and real-world data, showing our approach
outperforms other supervised methods when a limited amount of ground-truth
information is available.
Related papers
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Weakly-supervised deepfake localization in diffusion-generated images [4.548755617115687]
We propose a weakly-supervised localization problem based on the Xception network as the backbone architecture.
We show that the best performing detection method (based on local scores) is less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
arXiv Detail & Related papers (2023-11-08T10:27:36Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Continual Learning for Image-Based Camera Localization [14.47046413243358]
We study the problem of visual localization in a continual learning setup.
Our results show that similar to the classification domain, non-stationary data induces catastrophic forgetting in deep networks for visual localization.
We propose a new sampling method based on coverage score (Buff-CS) that adapts the existing sampling strategies in the buffering process to the problem of visual localization.
arXiv Detail & Related papers (2021-08-20T11:18:05Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.