Semi-supervised Autoencoding Projective Dependency Parsing
- URL: http://arxiv.org/abs/2011.00704v1
- Date: Mon, 2 Nov 2020 03:21:39 GMT
- Title: Semi-supervised Autoencoding Projective Dependency Parsing
- Authors: Xiao Zhang, Dan Goldwasser
- Abstract summary: We describe two end-to-end autoencoding models for semi-supervised graph-based projective dependency parsing.
Both models consist of two parts: an enhanced by deep neural networks (DNN) that can utilize the contextual information to encode the input into latent variables, and a decoder which is a generative model able to reconstruct the input.
- Score: 33.73819721400118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe two end-to-end autoencoding models for semi-supervised
graph-based projective dependency parsing. The first model is a Locally
Autoencoding Parser (LAP) encoding the input using continuous latent variables
in a sequential manner; The second model is a Globally Autoencoding Parser
(GAP) encoding the input into dependency trees as latent variables, with exact
inference. Both models consist of two parts: an encoder enhanced by deep neural
networks (DNN) that can utilize the contextual information to encode the input
into latent variables, and a decoder which is a generative model able to
reconstruct the input. Both LAP and GAP admit a unified structure with
different loss functions for labeled and unlabeled data with shared parameters.
We conducted experiments on WSJ and UD dependency parsing data sets, showing
that our models can exploit the unlabeled data to improve the performance given
a limited amount of labeled data, and outperform a previously proposed
semi-supervised model.
Related papers
- Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers [0.21756081703276003]
This thesis provides methods and analysis of models which make progress on this goal.
We introduce two new finetuning methods which add new capabilities to the models they are used on.
We provide theoretical and empirical insights on the divergence of model-likelihood and output quality.
arXiv Detail & Related papers (2024-08-29T03:50:24Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - Language as a Latent Sequence: deep latent variable models for
semi-supervised paraphrase generation [47.33223015862104]
We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text.
To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model.
Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data.
arXiv Detail & Related papers (2023-01-05T19:35:30Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z) - Deterministic Decoding for Discrete Data in Variational Autoencoders [5.254093731341154]
We study a VAE model with a deterministic decoder (DD-VAE) for sequential data that selects the highest-scoring tokens instead of sampling.
We demonstrate the performance of DD-VAE on multiple datasets, including molecular generation and optimization problems.
arXiv Detail & Related papers (2020-03-04T16:36:52Z) - Exploring Neural Models for Parsing Natural Language into First-Order
Logic [10.62143644603835]
We study the capability of neural models in parsing English sentences to First-Order Logic (FOL)
We model FOL parsing as a sequence to sequence mapping task where given a natural language sentence, it is encoded into an intermediate representation using an LSTM followed by a decoder which sequentially generates the predicates in the corresponding FOL formula.
arXiv Detail & Related papers (2020-02-16T09:22:32Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
A new framework is proposed for learning autoencoders of data distributions.
We minimize the discrepancy between the model and target distributions, with a emphrelational regularization
We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders.
arXiv Detail & Related papers (2020-02-07T17:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.