CaCL: Class-aware Codebook Learning for Weakly Supervised Segmentation
on Diffuse Image Patterns
- URL: http://arxiv.org/abs/2011.00794v2
- Date: Wed, 13 Apr 2022 14:52:03 GMT
- Title: CaCL: Class-aware Codebook Learning for Weakly Supervised Segmentation
on Diffuse Image Patterns
- Authors: Ruining Deng, Quan Liu, Shunxing Bao, Aadarsh Jha, Catie Chang, Bryan
A. Millis, Matthew J. Tyska, Yuankai Huo
- Abstract summary: We propose a novel class-aware codebook learning (CaCL) algorithm to perform weakly supervised learning for diffuse image patterns.
Specifically, the CaCL algorithm is deployed to segment protein expressed brush border regions from histological images of human duodenum.
- Score: 9.22349617343802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised learning has been rapidly advanced in biomedical image
analysis to achieve pixel-wise labels (segmentation) from image-wise
annotations (classification), as biomedical images naturally contain image-wise
labels in many scenarios. The current weakly supervised learning algorithms
from the computer vision community are largely designed for focal objects
(e.g., dogs and cats). However, such algorithms are not optimized for diffuse
patterns in biomedical imaging (e.g., stains and fluorescence in microscopy
imaging). In this paper, we propose a novel class-aware codebook learning
(CaCL) algorithm to perform weakly supervised learning for diffuse image
patterns. Specifically, the CaCL algorithm is deployed to segment protein
expressed brush border regions from histological images of human duodenum. Our
contribution is three-fold: (1) we approach the weakly supervised segmentation
from a novel codebook learning perspective; (2) the CaCL algorithm segments
diffuse image patterns rather than focal objects; and (3) the proposed
algorithm is implemented in a multi-task framework based on Vector
Quantised-Variational AutoEncoder (VQ-VAE) via joint image reconstruction,
classification, feature embedding, and segmentation. The experimental results
show that our method achieved superior performance compared with baseline
weakly supervised algorithms. The code is available at
https://github.com/ddrrnn123/CaCL.
Related papers
- Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts [0.0]
We propose a patch-based unsupervised image segmentation strategy that bridges advances in unsupervised feature extraction with the algorithmic help of classical graph-based methods.
We show that a simple convolutional neural network, trained to classify image patches, naturally leads to a state-of-the-art fully-convolutional unsupervised pixel-level segmenter.
arXiv Detail & Related papers (2023-11-01T19:59:25Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
We propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation.
Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss.
arXiv Detail & Related papers (2023-04-06T22:43:13Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - One-shot Weakly-Supervised Segmentation in Medical Images [12.184590794655517]
We present an innovative framework for 3D medical image segmentation with one-shot and weakly-supervised settings.
A propagation-reconstruction network is proposed to project scribbles from annotated volume to unlabeled 3D images.
A dual-level feature denoising module is designed to refine the scribbles based on anatomical- and pixel-level features.
arXiv Detail & Related papers (2021-11-21T09:14:13Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.