Data-free Knowledge Distillation for Segmentation using Data-Enriching
GAN
- URL: http://arxiv.org/abs/2011.00809v1
- Date: Mon, 2 Nov 2020 08:16:42 GMT
- Title: Data-free Knowledge Distillation for Segmentation using Data-Enriching
GAN
- Authors: Kaushal Bhogale
- Abstract summary: We propose a new training framework for performing knowledge distillation in a data-free setting.
We get an improvement of 6.93% in Mean IoU over previous approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distilling knowledge from huge pre-trained networks to improve the
performance of tiny networks has favored deep learning models to be used in
many real-time and mobile applications. Several approaches that demonstrate
success in this field have made use of the true training dataset to extract
relevant knowledge. In absence of the True dataset, however, extracting
knowledge from deep networks is still a challenge. Recent works on data-free
knowledge distillation demonstrate such techniques on classification tasks. To
this end, we explore the task of data-free knowledge distillation for
segmentation tasks. First, we identify several challenges specific to
segmentation. We make use of the DeGAN training framework to propose a novel
loss function for enforcing diversity in a setting where a few classes are
underrepresented. Further, we explore a new training framework for performing
knowledge distillation in a data-free setting. We get an improvement of 6.93%
in Mean IoU over previous approaches.
Related papers
- Behaviour Distillation [10.437472004180883]
We formalize behaviour distillation, a setting that aims to discover and condense information required for training an expert policy into a synthetic dataset.
We then introduce Hallucinating datasets with Evolution Strategies (HaDES), a method for behaviour distillation that can discover datasets of just four state-action pairs.
We show that these datasets generalize out of distribution to training policies with a wide range of architectures.
We also demonstrate application to a downstream task, namely training multi-task agents in a zero-shot fashion.
arXiv Detail & Related papers (2024-06-21T10:45:43Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
We propose a novel method dubbed Knowledge Distillation between Different Distributions" (KD$3$)
We first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network.
We also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment.
arXiv Detail & Related papers (2023-07-21T10:08:58Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Learning to Retain while Acquiring: Combating Distribution-Shift in
Adversarial Data-Free Knowledge Distillation [31.294947552032088]
Data-free Knowledge Distillation (DFKD) has gained popularity recently, with the fundamental idea of carrying out knowledge transfer from a Teacher to a Student neural network in the absence of training data.
We propose a meta-learning inspired framework by treating the task of Knowledge-Acquisition (learning from newly generated samples) and Knowledge-Retention (retaining knowledge on previously met samples) as meta-train and meta-test.
arXiv Detail & Related papers (2023-02-28T03:50:56Z) - Learning with Recoverable Forgetting [77.56338597012927]
Learning wIth Recoverable Forgetting explicitly handles the task- or sample-specific knowledge removal and recovery.
Specifically, LIRF brings in two innovative schemes, namely knowledge deposit and withdrawal.
We conduct experiments on several datasets, and demonstrate that the proposed LIRF strategy yields encouraging results with gratifying generalization capability.
arXiv Detail & Related papers (2022-07-17T16:42:31Z) - Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation [77.34726150561087]
This article explores various data distillation techniques that can reduce the amount of data required to successfully train deep networks.
Inspired by recent ideas, we suggest new data distillation techniques based on generative teaching networks, gradient matching, and the Implicit Function Theorem.
arXiv Detail & Related papers (2022-03-16T11:45:32Z) - Refine Myself by Teaching Myself: Feature Refinement via Self-Knowledge
Distillation [12.097302014936655]
This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD)
Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation.
We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets.
arXiv Detail & Related papers (2021-03-15T10:59:43Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.