Advanced Semantics for Commonsense Knowledge Extraction
- URL: http://arxiv.org/abs/2011.00905v3
- Date: Tue, 26 Jul 2022 15:47:52 GMT
- Title: Advanced Semantics for Commonsense Knowledge Extraction
- Authors: Tuan-Phong Nguyen, Simon Razniewski, Gerhard Weikum
- Abstract summary: Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots.
This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions.
Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets.
- Score: 32.43213645631101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Commonsense knowledge (CSK) about concepts and their properties is useful for
AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB
and others compiled large CSK collections, but are restricted in their
expressiveness to subject-predicate-object (SPO) triples with simple concepts
for S and monolithic strings for P and O. Also, these projects have either
prioritized precision or recall, but hardly reconcile these complementary
goals. This paper presents a methodology, called Ascent, to automatically build
a large-scale knowledge base (KB) of CSK assertions, with advanced
expressiveness and both better precision and recall than prior works. Ascent
goes beyond triples by capturing composite concepts with subgroups and aspects,
and by refining assertions with semantic facets. The latter are important to
express temporal and spatial validity of assertions and further qualifiers.
Ascent combines open information extraction with judicious cleaning using
language models. Intrinsic evaluation shows the superior size and quality of
the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the
benefits of Ascent. A web interface, data and code can be found at
https://ascent.mpi-inf.mpg.de/.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot
Learning [62.090051975043544]
Attribute and object (A-O) disentanglement is a fundamental and critical problem for Compositional Zero-shot Learning (CZSL)
We propose a novel A-O disentangled framework for CZSL, namely Class-specified Cascaded Network (CSCNet)
arXiv Detail & Related papers (2024-03-09T14:18:41Z) - CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense
Question Answering [56.592385613002584]
We propose Conceptualization-Augmented Reasoner (CAR) to tackle the task of zero-shot commonsense question answering.
CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CommonSense Knowledge Bases.
CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods.
arXiv Detail & Related papers (2023-05-24T08:21:31Z) - TIARA: Multi-grained Retrieval for Robust Question Answering over Large
Knowledge Bases [20.751369684593985]
TIARA outperforms previous SOTA, including those using PLMs or oracle entity annotations, by at least 4.1 and 1.1 F1 points on GrailQA and WebQuestionsSP.
arXiv Detail & Related papers (2022-10-24T02:41:10Z) - Extracting Cultural Commonsense Knowledge at Scale [28.856786775318486]
CANDLE is an end-to-end methodology for extracting high-quality cultural commonsense knowledge at scale.
It organizes assertions into coherent clusters for 3 domains of subjects (geography, religion, occupation) and several cultural facets.
It includes judicious techniques for classification-based filtering and scoring of interestingness.
arXiv Detail & Related papers (2022-10-14T12:53:57Z) - Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt [71.77504700496004]
Vision-language models are pre-trained by aligning image-text pairs in a common space to deal with open-set visual concepts.
To boost the transferability of the pre-trained models, recent works adopt fixed or learnable prompts.
However, how and what prompts can improve inference performance remains unclear.
arXiv Detail & Related papers (2022-05-23T07:51:15Z) - Augmenting Pre-trained Language Models with QA-Memory for Open-Domain
Question Answering [38.071375112873675]
We propose a question-answer augmented encoder-decoder model and accompanying pretraining strategy.
This yields an end-to-end system that outperforms prior QA retrieval methods on single-hop QA tasks.
arXiv Detail & Related papers (2022-04-10T02:33:00Z) - Refined Commonsense Knowledge from Large-Scale Web Contents [24.10708502359049]
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications.
This paper presents a method, called ASCENT++, to automatically build a large-scale knowledge base (KB) of CSK assertions.
arXiv Detail & Related papers (2021-11-30T20:26:09Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
arXiv Detail & Related papers (2020-09-04T15:32:19Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.