PBP-Net: Point Projection and Back-Projection Network for 3D Point Cloud
Segmentation
- URL: http://arxiv.org/abs/2011.00988v1
- Date: Mon, 2 Nov 2020 14:14:30 GMT
- Title: PBP-Net: Point Projection and Back-Projection Network for 3D Point Cloud
Segmentation
- Authors: JuYoung Yang, Chanho Lee, Pyunghwan Ahn, Haeil Lee, Eojindl Yi and
Junmo Kim
- Abstract summary: We propose a simple and efficient architecture named point projection and back-projection network (PBP-Net) for 3D point cloud segmentation.
To demonstrate effective 3D feature extraction using 2D CNN, we perform various experiments including comparison to recent methods.
- Score: 24.375383511061955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following considerable development in 3D scanning technologies, many studies
have recently been proposed with various approaches for 3D vision tasks,
including some methods that utilize 2D convolutional neural networks (CNNs).
However, even though 2D CNNs have achieved high performance in many 2D vision
tasks, existing works have not effectively applied them onto 3D vision tasks.
In particular, segmentation has not been well studied because of the difficulty
of dense prediction for each point, which requires rich feature representation.
In this paper, we propose a simple and efficient architecture named point
projection and back-projection network (PBP-Net), which leverages 2D CNNs for
the 3D point cloud segmentation. 3 modules are introduced, each of which
projects 3D point cloud onto 2D planes, extracts features using a 2D CNN
backbone, and back-projects features onto the original 3D point cloud. To
demonstrate effective 3D feature extraction using 2D CNN, we perform various
experiments including comparison to recent methods. We analyze the proposed
modules through ablation studies and perform experiments on object part
segmentation (ShapeNet-Part dataset) and indoor scene semantic segmentation
(S3DIS dataset). The experimental results show that proposed PBP-Net achieves
comparable performance to existing state-of-the-art methods.
Related papers
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks.
We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss.
Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks.
arXiv Detail & Related papers (2023-06-05T03:14:54Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.