Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation
- URL: http://arxiv.org/abs/2311.01989v2
- Date: Mon, 6 Nov 2023 08:18:26 GMT
- Title: Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation
- Authors: Shichao Dong, Fayao Liu, Guosheng Lin
- Abstract summary: We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
- Score: 67.07112533415116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large-scale pre-trained models such as Segment-Anything Model (SAM)
and Contrastive Language-Image Pre-training (CLIP) have demonstrated remarkable
success and revolutionized the field of computer vision. These foundation
vision models effectively capture knowledge from a large-scale broad data with
their vast model parameters, enabling them to perform zero-shot segmentation on
previously unseen data without additional training. While they showcase
competence in 2D tasks, their potential for enhancing 3D scene understanding
remains relatively unexplored. To this end, we present a novel framework that
adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using
different large vision models. We then project these mask predictions from
various frames of RGB-D video sequences into 3D space. To generate robust 3D
semantic pseudo labels, we introduce a semantic label fusion strategy that
effectively combines all the results via voting. We examine diverse scenarios,
like zero-shot learning and limited guidance from sparse 2D point labels, to
assess the pros and cons of different vision foundation models. Our approach is
experimented on ScanNet dataset for 3D indoor scenes, and the results
demonstrate the effectiveness of adopting general 2D foundation models on
solving 3D point cloud segmentation tasks.
Related papers
- Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation [19.2297264550686]
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods.
We introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities.
Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data.
arXiv Detail & Related papers (2024-08-16T07:52:00Z) - Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels [69.55622471172941]
Large-scale vision 2D vision language models, such as CLIP can be aligned with a 3D encoder to learn generalizable (open-vocabulary) 3D vision models.
We propose an optimization framework: Cross-MoST: Cross-Modal Self-Training, to improve the label-free classification performance of a zero-shot 3D vision model.
arXiv Detail & Related papers (2024-04-15T21:30:50Z) - PointSeg: A Training-Free Paradigm for 3D Scene Segmentation via Foundation Models [51.24979014650188]
We present PointSeg, a training-free paradigm that leverages off-the-shelf vision foundation models to address 3D scene perception tasks.
PointSeg can segment anything in 3D scene by acquiring accurate 3D prompts to align their corresponding pixels across frames.
Our approach significantly surpasses the state-of-the-art specialist training-free model by 14.1$%$, 12.3$%$, and 12.6$%$ mAP on ScanNet, ScanNet++, and KITTI-360 datasets.
arXiv Detail & Related papers (2024-03-11T03:28:20Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images [128.40422211090078]
We propose a knowledge distillation method for 3D point cloud pre-trained models to acquire knowledge directly from the 2D representation learning model.
Specifically, we introduce a cross-attention mechanism to extract concept features from 3D point cloud and compare them with the semantic information from 2D images.
In this scheme, the point cloud pre-trained models learn directly from rich information contained in 2D teacher models.
arXiv Detail & Related papers (2022-12-17T23:21:04Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
We present a more artful framework, LiDAR-guided Weakly Supervised Instance (LWSIS)
LWSIS uses the off-the-shelf 3D data, i.e., Point Cloud, together with the 3D boxes, as natural weak supervisions for training the 2D image instance segmentation models.
Our LWSIS not only exploits the complementary information in multimodal data during training, but also significantly reduces the cost of the dense 2D masks.
arXiv Detail & Related papers (2022-12-07T08:08:01Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.