論文の概要: Image Inpainting with Learnable Feature Imputation
- arxiv url: http://arxiv.org/abs/2011.01077v1
- Date: Mon, 2 Nov 2020 16:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 12:49:33.055315
- Title: Image Inpainting with Learnable Feature Imputation
- Title(参考訳): 学習可能な特徴インプテーションを用いた画像インペインティング
- Authors: H{\aa}kon Hukkel{\aa}s, Frank Lindseth, Rudolf Mester
- Abstract要約: 正規畳み込み層は、未知の領域にフィルターを適用するのと同じ方法で、塗装された画像の視覚的アーティファクトを引き起こす。
本稿では,欠落した入力値の畳み込みに対する(階層的な)特徴計算を提案する。
我々はCelebA-HQとPlaces2を比較し,そのモデルを検証する。
- 参考スコア(独自算出の注目度): 8.293345261434943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A regular convolution layer applying a filter in the same way over known and
unknown areas causes visual artifacts in the inpainted image. Several studies
address this issue with feature re-normalization on the output of the
convolution. However, these models use a significant amount of learnable
parameters for feature re-normalization, or assume a binary representation of
the certainty of an output. We propose (layer-wise) feature imputation of the
missing input values to a convolution. In contrast to learned feature
re-normalization, our method is efficient and introduces a minimal number of
parameters. Furthermore, we propose a revised gradient penalty for image
inpainting, and a novel GAN architecture trained exclusively on adversarial
loss. Our quantitative evaluation on the FDF dataset reflects that our revised
gradient penalty and alternative convolution improves generated image quality
significantly. We present comparisons on CelebA-HQ and Places2 to current
state-of-the-art to validate our model.
- Abstract(参考訳): 既知の領域や未知の領域に対して同じようにフィルタを適用する通常の畳み込み層は、塗装された画像に視覚的なアーティファクトを引き起こす。
いくつかの研究は、畳み込みの出力に関する特徴的再正規化でこの問題に対処している。
しかし、これらのモデルは機能の再正規化のためにかなりの量の学習可能なパラメータを使用するか、出力の確実性のバイナリ表現を仮定する。
畳み込みに欠落した入力値の(層別)特徴的含意を提案する。
学習した特徴再正規化とは対照的に,本手法は効率的であり,パラメータも最小である。
さらに,画像塗布における勾配ペナルティの修正と,敵対的損失に特化して訓練された新しいGANアーキテクチャを提案する。
fdfデータセットの定量的評価は,改良された勾配ペナルティと代替畳み込みが生成画像品質を大幅に改善することを示す。
我々はCelebA-HQとPlaces2を比較し,そのモデルを検証する。
関連論文リスト
- Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
超解像を生成するために,複数の低画質画像から抽出した特徴と組み合わせた低解像度画像を利用するアルゴリズムを開発した。
他のアルゴリズムとは異なり、我々のアプローチは属性情報を明示的に提供せずに顔の特徴を復元する。
これは、高解像度画像と低解像度画像を組み合わせて、より信頼性の高い超高解像度画像を生成するコンディショナーとして初めて使用される。
論文 参考訳(メタデータ) (2024-08-27T20:08:33Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) は、高品質な参照画像を必要としない、人間の知覚に合わせて画像品質を測定する手法を開発することを目的としている。
本研究では、画像歪み多様体をモデル化し、本質的な表現を得るための自己教師型アプローチ ARNIQA を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:22:25Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
本稿では、計算効率の良いWaveMixベースの完全畳み込みアーキテクチャであるWavePaintを用いて、視覚変換器から分岐する。
2次元離散ウェーブレット変換(DWT)を用いて、畳み込み層とともに、空間的および多重解像度のトークン混合を行う。
我々のモデルは、CelebA-HQデータセットの現在のGANアーキテクチャよりも優れている。
論文 参考訳(メタデータ) (2023-07-01T18:41:34Z) - Image Restoration with Mean-Reverting Stochastic Differential Equations [9.245782611878752]
本稿では,汎用画像復元のための微分方程式(SDE)を提案する。
対応する逆時間SDEをシミュレートすることにより、低画質画像の起源を復元することができる。
実験の結果,提案手法は画像の劣化, 劣化, 騒音の定量的比較において, 高い競争性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-01-27T13:20:48Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。