論文の概要: Perceive, Attend, and Drive: Learning Spatial Attention for Safe
Self-Driving
- arxiv url: http://arxiv.org/abs/2011.01153v2
- Date: Fri, 26 Mar 2021 03:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 11:39:23.413671
- Title: Perceive, Attend, and Drive: Learning Spatial Attention for Safe
Self-Driving
- Title(参考訳): 認識, 注意, ドライブ:安全な自動運転のための空間的注意を学習する
- Authors: Bob Wei, Mengye Ren, Wenyuan Zeng, Ming Liang, Bin Yang, Raquel
Urtasun
- Abstract要約: 本稿では,入力の重要領域への自動参加を学習するスパースアテンションモジュールを備えたエンドツーエンドの自動運転ネットワークを提案する。
注意モジュールは特に運動計画をターゲットにしているが、以前の文献は知覚タスクにのみ注意を向けていた。
- 参考スコア(独自算出の注目度): 84.59201486239908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an end-to-end self-driving network featuring a
sparse attention module that learns to automatically attend to important
regions of the input. The attention module specifically targets motion
planning, whereas prior literature only applied attention in perception tasks.
Learning an attention mask directly targeted for motion planning significantly
improves the planner safety by performing more focused computation.
Furthermore, visualizing the attention improves interpretability of end-to-end
self-driving.
- Abstract(参考訳): 本稿では,入力の重要領域への自動参加を学習するスパースアテンションモジュールを備えたエンドツーエンドの自動運転ネットワークを提案する。
注意モジュールは特に運動計画をターゲットにしているが、以前の文献は知覚タスクにのみ注意を向けていた。
動き計画を直接ターゲットとした注意マスクの学習は、より集中的な計算を行うことでプランナーの安全性を著しく向上させる。
さらに、注意を可視化することで、エンドツーエンドの自動運転の解釈性が向上する。
関連論文リスト
- Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
コストのかかるラベルを必要とせずにエンドツーエンドの運転を改善するための,新しい自己管理手法を提案する。
フレームワーク textbfLAW は LAtent World モデルを用いて,予測エゴアクションと現在のフレームの潜在機能に基づいて,今後の潜在機能を予測する。
その結果,オープンループベンチマークとクローズループベンチマークの両方において,コストのかかるアノテーションを使わずに最先端のパフォーマンスを実現することができた。
論文 参考訳(メタデータ) (2024-06-12T17:59:21Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Where and What: Driver Attention-based Object Detection [13.5947650184579]
画素レベルとオブジェクトレベルのアテンション予測のギャップを埋める。
本フレームワークは,画素レベルとオブジェクトレベルの両方において,最先端の競合性能を実現する。
論文 参考訳(メタデータ) (2022-04-26T08:38:22Z) - Importance is in your attention: agent importance prediction for
autonomous driving [4.176937532441124]
軌道予測は自動運転において重要な課題である。
また,エゴ車両の今後の計画軌道について,各エージェントの重要度を計測するためにも注意情報を利用することができることを示す。
論文 参考訳(メタデータ) (2022-04-19T20:34:30Z) - Important Object Identification with Semi-Supervised Learning for
Autonomous Driving [37.654878298744855]
本稿では,エゴセントリック駆動シナリオにおける重要な物体識別のための新しい手法を提案する。
モデルが無制限なラベル付きデータから学習できるようにするための,半教師付き学習パイプラインを提案する。
私たちのアプローチはルールベースのベースラインよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-03-05T01:23:13Z) - CoCAtt: A Cognitive-Conditioned Driver Attention Dataset [16.177399201198636]
運転注意予測は、ハイリスクイベントの緩和と防止に重要な役割を果たす。
我々は新しいドライバーアテンションデータセットであるCoCAttを提示する。
CoCAttは、自律性レベル、アイトラッカーの解像度、運転シナリオといった面で、最大かつ最も多様なドライバー注意データセットである。
論文 参考訳(メタデータ) (2021-11-19T02:42:34Z) - Alignment Attention by Matching Key and Query Distributions [48.93793773929006]
本稿では,各ヘッダ内のキーとクエリの分布を一致させる自己注意を促すアライメントアテンションアテンションアテンションアテンションアテンションを導入している。
事前学習したモデルを含む自己注意のモデルはすべて、提案したアライメントアテンションアテンションアテンションに変換することが簡単である。
様々な言語理解タスクにおいて, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃に対する堅牢性などの手法の有効性を示す。
論文 参考訳(メタデータ) (2021-10-25T00:54:57Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Explaining Autonomous Driving by Learning End-to-End Visual Attention [25.09407072098823]
現在のディープラーニングベースの自律運転アプローチは、いくつかの制御されたシナリオにおいて、本番環境へのデプロイも実現している。
最も人気があり魅力的なアプローチの1つは、センサーが認識したデータから直接車両の制御を学習することに依存している。
このアプローチの主な欠点は、他の学習問題と同様に、説明可能性の欠如である。実際、ディープネットワークは、なぜそのような決定を下されたのかを何のフィードバックも与えずに、これまで見られた駆動パターンによって予測を出力するブラックボックスとして機能する。
論文 参考訳(メタデータ) (2020-06-05T10:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。