Valuing Player Actions in Counter-Strike: Global Offensive
- URL: http://arxiv.org/abs/2011.01324v2
- Date: Wed, 4 Nov 2020 18:35:51 GMT
- Title: Valuing Player Actions in Counter-Strike: Global Offensive
- Authors: Peter Xenopoulos, Harish Doraiswamy, Claudio Silva
- Abstract summary: Using over 70 million in-game CSGO events, we demonstrate our framework's consistency and independence.
We also provide use cases demonstrating high-impact play identification and uncertainty estimation.
- Score: 4.621805808537653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Esports, despite its expanding interest, lacks fundamental sports analytics
resources such as accessible data or proven and reproducible analytical
frameworks. Even Counter-Strike: Global Offensive (CSGO), the second most
popular esport, suffers from these problems. Thus, quantitative evaluation of
CSGO players, a task important to teams, media, bettors and fans, is difficult.
To address this, we introduce (1) a data model for CSGO with an open-source
implementation; (2) a graph distance measure for defining distances in CSGO;
and (3) a context-aware framework to value players' actions based on changes in
their team's chances of winning. Using over 70 million in-game CSGO events, we
demonstrate our framework's consistency and independence compared to existing
valuation frameworks. We also provide use cases demonstrating high-impact play
identification and uncertainty estimation.
Related papers
- Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis [24.683917771144536]
We develop measures to quantify balance in zero-sum competitive scenarios.
We identify useful categories of compositions and pinpoint their counter relationships.
Our framework has been validated in popular online games, including Age of Empires II, Hearthstone, Brawl Stars, and League of Legends.
arXiv Detail & Related papers (2024-08-30T10:28:36Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - ESTA: An Esports Trajectory and Action Dataset [0.0]
We use esports data to develop machine learning models for win prediction.
Awpy is an open-source library that can extract player trajectories and actions from game logs.
ESTA is one of the largest and most granular publicly available sports data sets to date.
arXiv Detail & Related papers (2022-09-20T17:13:50Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
We propose a semi-supervised win prediction model for esports based on graph convolutional networks.
GCN-WP integrates over 30 features about the match and players and employs graph convolution to classify games based on their neighborhood.
Our model achieves state-of-the-art prediction accuracy when compared to machine learning or skill rating models for LoL.
arXiv Detail & Related papers (2022-07-26T21:38:07Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
We present a survey on video action recognition for sports analytics.
We introduce more than ten types of sports, including team sports, such as football, basketball, volleyball, hockey and individual sports, such as figure skating, gymnastics, table tennis, diving and badminton.
We develop a toolbox using PaddlePaddle, which supports football, basketball, table tennis and figure skating action recognition.
arXiv Detail & Related papers (2022-06-02T13:19:36Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Action Recognition using Transfer Learning and Majority Voting for CSGO [0.6875312133832078]
This manuscript aims to develop a model for accurate prediction of 4 different actions and compare the performance among the five different transfer learning models with our self-developed deep neural network.
The result of this model aids to the construction of the automated system of gathering and processing more data alongside solving the issue of collecting data from HLTV.
arXiv Detail & Related papers (2021-11-06T13:33:20Z) - Optimal Team Economic Decisions in Counter-Strike [0.0]
We introduce a game-level win probability model to predict a team's chance of winning a game at the beginning of a given round.
Using our win probability model, we investigate optimal team spending decisions for important game scenarios.
Finally, we introduce a metric, Optimal Spending Error (OSE), to rank teams by how closely their spending decisions follow our predicted optimal spending decisions.
arXiv Detail & Related papers (2021-09-20T15:16:36Z) - Bandit Modeling of Map Selection in Counter-Strike: Global Offensive [55.41644538483948]
In Counter-Strike: Global Offensive (CSGO) matches, two teams first pick and ban maps, or virtual worlds, to play.
We introduce a contextual bandit framework to tackle the problem of map selection in CSGO and to investigate teams' pick and ban decision-making.
We find that teams have suboptimal map choice policies with respect to both picking and banning.
We also define an approach for rewarding bans, which has not been explored in the bandit setting, and find that incorporating ban rewards improves model performance.
arXiv Detail & Related papers (2021-06-14T23:47:36Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.