論文の概要: "You eat with your eyes first": Optimizing Yelp Image Advertising
- arxiv url: http://arxiv.org/abs/2011.01434v1
- Date: Tue, 3 Nov 2020 02:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:10:36.263761
- Title: "You eat with your eyes first": Optimizing Yelp Image Advertising
- Title(参考訳): yelpの画像広告を最適化する「you eat with your eyes first」
- Authors: Gaurab Banerjee, Samuel Spinner, Yasmine Mitchell
- Abstract要約: Yelpのイメージデータセットとスターベースのレビューシステムを、ビジネスを推進するためのイメージの有効性の測定に使用しています。
様々な画像カテゴリの星格分類において90~98%の精度を達成し、青い空、オープンな環境、多くの窓を含む画像がYelpのレビューと相関していることを観察した。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A business's online, photographic representation can play a crucial role in
its success or failure. We use Yelp's image dataset and star-based review
system as a measurement of an image's effectiveness in promoting a business.
After preprocessing the Yelp dataset, we use transfer learning to train a
classifier which accepts Yelp images and predicts star-ratings. Additionally,
we then train a GAN to qualitatively investigate the common properties of
highly effective images. We achieve 90-98% accuracy in classifying simplified
star ratings for various image categories and observe that images containing
blue skies, open surroundings, and many windows are correlated with higher Yelp
reviews.
- Abstract(参考訳): ビジネスのオンライン写真表現はその成功や失敗において重要な役割を果たす。
Yelpのイメージデータセットとスターベースのレビューシステムを、ビジネスを推進するためのイメージの有効性の測定に使用しています。
Yelpデータセットを前処理した後、転送学習を使用して、Yelpイメージを受け入れて星座を予測する分類器をトレーニングします。
さらに,ganを訓練し,高効率画像の共通特性を定性的に検討する。
様々な画像カテゴリの星格分類において90~98%の精度を達成し、青い空、オープンな環境、多くの窓を含む画像がYelpのレビューと相関していることを確認する。
関連論文リスト
- AID-AppEAL: Automatic Image Dataset and Algorithm for Content Appeal Enhancement and Assessment Labeling [11.996211235559866]
Image Content Appeal Assessment (ICAA) は、画像のコンテンツが視聴者に対して生成する肯定的な関心のレベルを定量化する新しいメトリクスである。
ICAAは、画像の芸術的品質を判断する伝統的な画像美学評価(IAA)とは異なる。
論文 参考訳(メタデータ) (2024-07-08T01:40:32Z) - Product Review Image Ranking for Fashion E-commerce [0.0]
当社のネットワークは、高品質の画像よりも品質の悪い画像をランク付けするようにトレーニングしています。
提案手法は,2つの指標,すなわち相関係数と精度のベースラインモデルに対して,かなりのマージンで性能を向上する。
論文 参考訳(メタデータ) (2023-08-10T07:09:13Z) - Auditing Yelp's Business Ranking and Review Recommendation Through the
Lens of Fairness [10.957942355264093]
本研究では、Yelpのビジネスランキングとレビューレコメンデーションシステムについて、公正なレンズを通して検討する。
女性や未確立のユーザのレビューは、不公平に推奨されるものとして分類されている。
また、ホットスポット地域にあるレストランと、その平均露光量との間には、肯定的な関連性があることが判明した。
論文 参考訳(メタデータ) (2023-08-04T04:12:33Z) - ImageNet-Hard: The Hardest Images Remaining from a Study of the Power of
Zoom and Spatial Biases in Image Classification [9.779748872936912]
入力画像の適切なフレーミングは、イメージネット画像の98.91%の正確な分類につながることを示す。
本稿では,モデルにズームイン操作を明示的に実行させることにより,分類精度を向上させるテスト時間拡張(TTA)手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T23:55:50Z) - VILA: Learning Image Aesthetics from User Comments with Vision-Language
Pretraining [53.470662123170555]
ユーザからのコメントから画像美学を学習し、マルチモーダルな美学表現を学習するための視覚言語事前学習手法を提案する。
具体的には、コントラスト的および生成的目的を用いて、画像テキストエンコーダ-デコーダモデルを事前訓練し、人間のラベルなしでリッチで汎用的な美的意味学を学習する。
以上の結果から,AVA-Captionsデータセットを用いた画像の美的字幕化において,事前学習した美的視覚言語モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-03-24T23:57:28Z) - Saliency Guided Contrastive Learning on Scene Images [71.07412958621052]
我々は、学習中のモデルの出力から導かれるサリエンシマップを活用し、差別的な領域を強調し、対照的な学習全体をガイドする。
提案手法は,画像上の自己教師学習の性能を,画像の線形評価において+1.1,+4.3,+2.2の精度で向上させる。
論文 参考訳(メタデータ) (2023-02-22T15:54:07Z) - Reviews in motion: a large scale, longitudinal study of review
recommendations on Yelp [24.34131115451651]
我々は、プラットフォームがレビューのためにフィルタリング決定を変更する「再分類」に焦点を当てる。
私たちは1250万以上のレビューをコンパイルします。
我々のデータは、人口密度の低下と低中間所得地域の変化により、再分類における人口格差が示唆されている。
論文 参考訳(メタデータ) (2022-02-18T03:27:53Z) - An Automatic Image Content Retrieval Method for better Mobile Device
Display User Experiences [91.3755431537592]
モバイル端末向け画像コンテンツ検索と分類のための新しいモバイルアプリケーションを提案する。
このアプリケーションは何千もの写真で実行され、モバイルディスプレイでより良いユーザー視覚体験を実現するための励ましの成果を見せた。
論文 参考訳(メタデータ) (2021-08-26T23:44:34Z) - User-Guided Personalized Image Aesthetic Assessment based on Deep
Reinforcement Learning [64.07820203919283]
本稿では,新しいユーザガイド型画像美観評価フレームワークを提案する。
深部強化学習(DRL)に基づく審美評価のためのユーザインタラクションを活用して画像のリタッチとランク付けを行う
パーソナライズされた審美分布は、異なるユーザの審美的嗜好とより一致している。
論文 参考訳(メタデータ) (2021-06-14T15:19:48Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
帰納的バイアスは、ラベルなし画像の平坦な集合から学習でき、目に見えるクラスと目に見えないクラスの間で伝達可能な表現としてインスタンス化されることを示す。
具体的には、トランスファー可能な表現を学習するための、新しいパートベース自己教師型表現学習手法を提案する。
我々の手法は印象的な結果をもたらし、それまでの最高の教師なし手法を7.74%、9.24%上回った。
論文 参考訳(メタデータ) (2021-05-25T12:22:11Z) - Self-Supervised Ranking for Representation Learning [108.38993212650577]
本稿では、画像検索コンテキストにおけるランキング問題として定式化することで、自己教師型表現学習のための新しいフレームワークを提案する。
我々は、画像のランダムなビューが正に関連していると考えられるランク付けのための平均精度(AP)を最大化し、表現エンコーダを訓練する。
原則として、ランク付け基準を使用することで、対象中心のキュレートされたデータセットへの依存を排除します。
論文 参考訳(メタデータ) (2020-10-14T17:24:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。