A Scenario-Based Development Framework for Autonomous Driving
- URL: http://arxiv.org/abs/2011.01439v2
- Date: Thu, 5 Nov 2020 20:09:36 GMT
- Title: A Scenario-Based Development Framework for Autonomous Driving
- Authors: Xiaoyi Li
- Abstract summary: This article summarizes the research progress of scenario-based testing and development technology for autonomous vehicles.
We propose the definition of scenario, the elements of the scenario, the data source of the scenario, the processing method of the scenario data, and scenario-based V-Model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article summarizes the research progress of scenario-based testing and
development technology for autonomous vehicles. We systematically analyzed
previous research works and proposed the definition of scenario, the elements
of the scenario ontology, the data source of the scenario, the processing
method of the scenario data, and scenario-based V-Model. Moreover, we
summarized the automated test scenario construction method by random scenario
generation and dangerous scenario generation.
Related papers
- Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
Large Language Models (LLMs) have shown promise in autonomous driving.
This paper introduces a framework for generating diverse Out-Of-Distribution (OOD) driving scenarios.
We evaluate our framework through extensive simulations and introduce a new "OOD-ness" metric.
arXiv Detail & Related papers (2024-11-25T16:38:17Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - Is Scenario Generation Ready for SOTIF? A Systematic Literature Review [3.1491385041570146]
We perform a Systematic Literature Review to identify techniques that generate scenarios complying with requirements of the SOTIF-standard.
We investigate which details of the real-world are covered by generated scenarios, whether scenarios are specific for a system under test or generic, and whether scenarios are designed to minimize the set of unknown and hazardous scenarios.
arXiv Detail & Related papers (2023-08-04T11:59:21Z) - Acquire Driving Scenarios Efficiently: A Framework for Prospective
Assessment of Cost-Optimal Scenario Acquisition [0.1999925939110439]
This paper proposes a methodology to quantify the cost-optimal usage of scenario generation approaches to reach a certainly complete scenario space coverage.
A methodology is proposed to fit the meta model including the prediction of reachable complete coverage, quality criteria, and costs.
arXiv Detail & Related papers (2023-07-21T15:26:08Z) - Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles [0.0]
In scenario-based testing, relevant (driving) scenarios are the basis of tests.
We address the open challenges of classifying sets of scenarios and measuring coverage of theses scenarios in recorded test drives.
arXiv Detail & Related papers (2023-07-11T08:30:57Z) - UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
Summarization quality evaluation is a non-trivial task in text summarization.
We propose Unified Multi-scenario Summarization Evaluation Model (UMSE)
Our UMSE is the first unified summarization evaluation framework engaged with the ability to be used in three evaluation scenarios.
arXiv Detail & Related papers (2023-05-26T12:54:44Z) - Vectorized Scenario Description and Motion Prediction for Scenario-Based
Testing [2.07180164747172]
This paper proposes a vectorized scenario description defined by the road geometry and vehicles' trajectories.
Data of this form are generated for three scenarios, merged, and used to train the motion prediction model VectorNet.
arXiv Detail & Related papers (2023-02-02T15:32:25Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge.
We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cyber-physical systems.
arXiv Detail & Related papers (2021-08-20T04:51:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Rearrangement: A Challenge for Embodied AI [229.8891614821016]
We describe a framework for research and evaluation in Embodied AI.
Our proposal is based on a canonical task: Rearrangement.
We present experimental testbeds of rearrangement scenarios in four different simulation environments.
arXiv Detail & Related papers (2020-11-03T19:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.