Meta-Learning for Natural Language Understanding under Continual
Learning Framework
- URL: http://arxiv.org/abs/2011.01452v1
- Date: Tue, 3 Nov 2020 03:41:10 GMT
- Title: Meta-Learning for Natural Language Understanding under Continual
Learning Framework
- Authors: Jiacheng Wang, Yong Fan, Duo Jiang, Shiqing Li
- Abstract summary: We implement the model-agnostic meta-learning (MAML) and Online aware Meta-learning (OML) meta-objective under the continual framework for NLU tasks.
We validate our methods on selected SuperGLUE and GLUE benchmark.
- Score: 2.620911206953405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network has been recognized with its accomplishments on tackling
various natural language understanding (NLU) tasks. Methods have been developed
to train a robust model to handle multiple tasks to gain a general
representation of text. In this paper, we implement the model-agnostic
meta-learning (MAML) and Online aware Meta-learning (OML) meta-objective under
the continual framework for NLU tasks. We validate our methods on selected
SuperGLUE and GLUE benchmark.
Related papers
- ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConML is a universal meta-learning framework that can be applied to various meta-learning algorithms.
We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms.
arXiv Detail & Related papers (2024-10-08T12:22:10Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks.
We propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance.
arXiv Detail & Related papers (2022-10-17T11:09:35Z) - Context-Aware Language Modeling for Goal-Oriented Dialogue Systems [84.65707332816353]
We formulate goal-oriented dialogue as a partially observed Markov decision process.
We derive a simple and effective method to finetune language models in a goal-aware way.
We evaluate our method on a practical flight-booking task using AirDialogue.
arXiv Detail & Related papers (2022-04-18T17:23:11Z) - Online Structured Meta-learning [137.48138166279313]
Current online meta-learning algorithms are limited to learn a globally-shared meta-learner.
We propose an online structured meta-learning (OSML) framework to overcome this limitation.
Experiments on three datasets demonstrate the effectiveness and interpretability of our proposed framework.
arXiv Detail & Related papers (2020-10-22T09:10:31Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
Meta-learning also known as learning-to-learn which seeks rapid and accurate model adaptation to unseen tasks.
We briefly introduce meta-learning methodologies in the following categories: black-box meta-learning, metric-based meta-learning, layered meta-learning and Bayesian meta-learning framework.
arXiv Detail & Related papers (2020-04-17T03:11:08Z) - Structured Prediction for Conditional Meta-Learning [44.30857707980074]
We propose a new perspective on conditional meta-learning via structured prediction.
We derive task-adaptive structured meta-learning (TASML), a principled framework that yields task-specific objective functions.
Empirically, we show that TASML improves the performance of existing meta-learning models, and outperforms the state-of-the-art on benchmark datasets.
arXiv Detail & Related papers (2020-02-20T15:24:15Z) - Automated Relational Meta-learning [95.02216511235191]
We propose an automated relational meta-learning framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph.
We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.
arXiv Detail & Related papers (2020-01-03T07:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.