ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning
- URL: http://arxiv.org/abs/2410.05975v2
- Date: Mon, 14 Oct 2024 12:06:31 GMT
- Title: ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning
- Authors: Shiguang Wu, Yaqing Wang, Yatao Bian, Quanming Yao,
- Abstract summary: ConML is a universal meta-learning framework that can be applied to various meta-learning algorithms.
We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms.
- Score: 49.447777286862994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. To emulate this human-like rapid learning and enhance alignment and discrimination abilities, we propose ConML, a universal meta-learning framework that can be applied to various meta-learning algorithms without relying on specific model architectures nor target models. The core of ConML is task-level contrastive learning, which extends contrastive learning from the representation space in unsupervised learning to the model space in meta-learning. By leveraging task identity as an additional supervision signal during meta-training, we contrast the outputs of the meta-learner in the model space, minimizing inner-task distance (between models trained on different subsets of the same task) and maximizing inter-task distance (between models from different tasks). We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms, as well as in-context learning, resulting in performance improvements across diverse few-shot learning tasks.
Related papers
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
arXiv Detail & Related papers (2024-10-24T16:32:23Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks.
We propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance.
arXiv Detail & Related papers (2022-10-17T11:09:35Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - MetaICL: Learning to Learn In Context [87.23056864536613]
We introduce MetaICL, a new meta-training framework for few-shot learning where a pretrained language model is tuned to do in-context learn-ing on a large set of training tasks.
We show that MetaICL approaches (and sometimes beats) the performance of models fully finetuned on the target task training data, and outperforms much bigger models with nearly 8x parameters.
arXiv Detail & Related papers (2021-10-29T17:42:08Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
Meta-learning also known as learning-to-learn which seeks rapid and accurate model adaptation to unseen tasks.
We briefly introduce meta-learning methodologies in the following categories: black-box meta-learning, metric-based meta-learning, layered meta-learning and Bayesian meta-learning framework.
arXiv Detail & Related papers (2020-04-17T03:11:08Z) - Structured Prediction for Conditional Meta-Learning [44.30857707980074]
We propose a new perspective on conditional meta-learning via structured prediction.
We derive task-adaptive structured meta-learning (TASML), a principled framework that yields task-specific objective functions.
Empirically, we show that TASML improves the performance of existing meta-learning models, and outperforms the state-of-the-art on benchmark datasets.
arXiv Detail & Related papers (2020-02-20T15:24:15Z) - Automated Relational Meta-learning [95.02216511235191]
We propose an automated relational meta-learning framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph.
We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.
arXiv Detail & Related papers (2020-01-03T07:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.