論文の概要: Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2011.01539v1
- Date: Tue, 3 Nov 2020 07:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 04:17:07.472938
- Title: Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks
- Title(参考訳): 深部ニューラルネットワークの対向ロバスト性理解の最近の進歩
- Authors: Tao Bai, Jinqi Luo, Jun Zhao
- Abstract要約: 敵の例に抵抗する高い堅牢性を持つモデルを得ることがますます重要である。
我々は、敵の攻撃と堅牢性について、予備的な定義を与える。
我々は、頻繁に使用されるベンチマークについて研究し、理論的に証明された敵の堅牢性の境界について言及する。
- 参考スコア(独自算出の注目度): 15.217367754000913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples are inevitable on the road of pervasive applications of
deep neural networks (DNN). Imperceptible perturbations applied on natural
samples can lead DNN-based classifiers to output wrong prediction with fair
confidence score. It is increasingly important to obtain models with high
robustness that are resistant to adversarial examples. In this paper, we survey
recent advances in how to understand such intriguing property, i.e. adversarial
robustness, from different perspectives. We give preliminary definitions on
what adversarial attacks and robustness are. After that, we study
frequently-used benchmarks and mention theoretically-proved bounds for
adversarial robustness. We then provide an overview on analyzing correlations
among adversarial robustness and other critical indicators of DNN models.
Lastly, we introduce recent arguments on potential costs of adversarial
training which have attracted wide attention from the research community.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の広汎な応用の過程では、敵の例は避けられない。
自然サンプルに適用される知覚不能な摂動は、DNNベースの分類器を公平な信頼スコアで誤った予測を出力させる。
敵対的な例に抵抗する高い堅牢性を持つモデルを得ることがますます重要である。
本稿では,このような興味をそそる性質,すなわち,逆ロバスト性を理解するための最近の進歩について,異なる視点から調査する。
我々は、敵の攻撃と堅牢性について予備的な定義を与える。
その後、頻繁に使用されるベンチマークを調査し、逆ロバスト性に対する理論的に証明された境界について言及する。
次に,dnnモデルの逆ロバスト性と他の重要な指標との相関解析について概説する。
最後に,研究コミュニティから注目されている対人訓練の潜在的コストに関する最近の議論を紹介する。
関連論文リスト
- Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis [25.993502776271022]
大きなパラメータ空間を持つことは、敵の例に対するニューラルネットワークの脆弱性の主な疑念の1つと考えられている。
従来の研究は、検討されたモデルによっては、敵の例を生成するアルゴリズムが適切に機能しないことを示した。
論文 参考訳(メタデータ) (2024-06-14T14:47:06Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - Demystifying Causal Features on Adversarial Examples and Causal
Inoculation for Robust Network by Adversarial Instrumental Variable
Regression [32.727673706238086]
本稿では、因果的な観点から、敵の訓練を受けたネットワークにおける予期せぬ脆弱性を掘り下げる手法を提案する。
展開することで,不偏環境下での敵予測の因果関係を推定する。
その結果, 推定因果関係は, 正解率の正解率と高い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-03-02T08:18:22Z) - Improving Adversarial Robustness via Mutual Information Estimation [144.33170440878519]
ディープニューラルネットワーク(DNN)は、敵の雑音に弱い。
本稿では,情報理論の観点から,対象モデルの出力と入力対向サンプルの依存性について検討する。
本稿では,自然MIの最大化と,学習過程における敵MIの最小化により,敵ロバスト性を高めることを提案する。
論文 参考訳(メタデータ) (2022-07-25T13:45:11Z) - On the Relationship Between Adversarial Robustness and Decision Region
in Deep Neural Network [26.656444835709905]
敵攻撃時のモデルロバスト性に影響を与えるディープニューラルネットワーク(DNN)の内部特性について検討する。
本稿では,より頻度の高いトレーニングサンプルを配置するPRS(Populated Region Set)の概念を提案する。
論文 参考訳(メタデータ) (2022-07-07T16:06:34Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。