Experiencers, Stimuli, or Targets: Which Semantic Roles Enable Machine
Learning to Infer the Emotions?
- URL: http://arxiv.org/abs/2011.01599v2
- Date: Wed, 4 Nov 2020 08:05:43 GMT
- Title: Experiencers, Stimuli, or Targets: Which Semantic Roles Enable Machine
Learning to Infer the Emotions?
- Authors: Laura Oberl\"ander, Kevin Reich and Roman Klinger
- Abstract summary: We train emotion classification models on annotated datasets with at least one semantic role.
We find that across multiple corpora, stimuli and targets carry emotion information, while the experiencer might be considered a confounder.
- Score: 9.374871304813638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emotion recognition is predominantly formulated as text classification in
which textual units are assigned to an emotion from a predefined inventory
(e.g., fear, joy, anger, disgust, sadness, surprise, trust, anticipation). More
recently, semantic role labeling approaches have been developed to extract
structures from the text to answer questions like: "who is described to feel
the emotion?" (experiencer), "what causes this emotion?" (stimulus), and at
which entity is it directed?" (target). Though it has been shown that jointly
modeling stimulus and emotion category prediction is beneficial for both
subtasks, it remains unclear which of these semantic roles enables a classifier
to infer the emotion. Is it the experiencer, because the identity of a person
is biased towards a particular emotion (X is always happy)? Is it a particular
target (everybody loves X) or a stimulus (doing X makes everybody sad)? We
answer these questions by training emotion classification models on five
available datasets annotated with at least one semantic role by masking the
fillers of these roles in the text in a controlled manner and find that across
multiple corpora, stimuli and targets carry emotion information, while the
experiencer might be considered a confounder. Further, we analyze if informing
the model about the position of the role improves the classification decision.
Particularly on literature corpora we find that the role information improves
the emotion classification.
Related papers
- Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
The term emotion analysis in text subsumes various natural language processing tasks.
We argue that emotions and events are related in two ways.
We discuss how to incorporate psychological appraisal theories in NLP models to interpret events.
arXiv Detail & Related papers (2023-09-05T09:56:29Z) - Automatic Emotion Experiencer Recognition [12.447379545167642]
We show that experiencer detection in text is a challenging task, with a precision of.82 and a recall of.56 (F1 =.66)
We show that experiencer detection in text is a challenging task, with a precision of.82 and a recall of.56 (F1 =.66)
arXiv Detail & Related papers (2023-05-26T08:33:28Z) - Experiencer-Specific Emotion and Appraisal Prediction [13.324006587838523]
Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs.
We focus on the experiencers of events, and assign an emotion (if any holds) to each of them.
Our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines.
arXiv Detail & Related papers (2022-10-21T16:04:27Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
Visual Emotion Analysis (VEA) aims to predict people's emotions towards different visual stimuli.
Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process.
We propose a novel textitSubjectivity Appraise-and-Match Network (SAMNet) to investigate the subjectivity in visual emotion distribution.
arXiv Detail & Related papers (2022-07-25T02:20:03Z) - x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations [13.324006587838523]
We argue that a classification setup for emotion analysis should be performed in an integrated manner, including the different semantic roles that participate in an emotion episode.
Based on appraisal theories in psychology, we compile an English corpus of written event descriptions.
The descriptions depict emotion-eliciting circumstances, and they contain mentions of people who responded emotionally.
arXiv Detail & Related papers (2022-03-21T12:02:06Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
We use the emotion component process model (CPM) by Scherer (2005) to explain emotion communication.
CPM states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency.
We find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader.
arXiv Detail & Related papers (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Emotion Carrier Recognition from Personal Narratives [74.24768079275222]
Personal Narratives (PNs) are recollections of facts, events, and thoughts from one's own experience.
We propose a novel task for Narrative Understanding: Emotion Carrier Recognition (ECR)
arXiv Detail & Related papers (2020-08-17T17:16:08Z) - Emotion Recognition From Gait Analyses: Current Research and Future
Directions [48.93172413752614]
gait conveys information about the walker's emotion.
The mapping between various emotions and gait patterns provides a new source for automated emotion recognition.
gait is remotely observable, more difficult to imitate, and requires less cooperation from the subject.
arXiv Detail & Related papers (2020-03-13T08:22:33Z) - Annotation of Emotion Carriers in Personal Narratives [69.07034604580214]
We are interested in the problem of understanding personal narratives (PN) - spoken or written - recollections of facts, events, and thoughts.
In PN, emotion carriers are the speech or text segments that best explain the emotional state of the user.
This work proposes and evaluates an annotation model for identifying emotion carriers in spoken personal narratives.
arXiv Detail & Related papers (2020-02-27T15:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.