Regularized spectral methods for clustering signed networks
- URL: http://arxiv.org/abs/2011.01737v1
- Date: Tue, 3 Nov 2020 14:40:34 GMT
- Title: Regularized spectral methods for clustering signed networks
- Authors: Mihai Cucuringu, Apoorv Vikram Singh, D\'eborah Sulem, Hemant Tyagi
- Abstract summary: We study the problem of $k$-way clustering in signed graphs.
We build on the results in [CDGT 2019] on two fronts for the normalized versions of SPONGE and the Signed Laplacian.
- Score: 7.547306670351599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of $k$-way clustering in signed graphs. Considerable
attention in recent years has been devoted to analyzing and modeling signed
graphs, where the affinity measure between nodes takes either positive or
negative values. Recently, Cucuringu et al. [CDGT 2019] proposed a spectral
method, namely SPONGE (Signed Positive over Negative Generalized Eigenproblem),
which casts the clustering task as a generalized eigenvalue problem optimizing
a suitably defined objective function. This approach is motivated by social
balance theory, where the clustering task aims to decompose a given network
into disjoint groups, such that individuals within the same group are connected
by as many positive edges as possible, while individuals from different groups
are mainly connected by negative edges. Through extensive numerical
simulations, SPONGE was shown to achieve state-of-the-art empirical
performance. On the theoretical front, [CDGT 2019] analyzed SPONGE and the
popular Signed Laplacian method under the setting of a Signed Stochastic Block
Model (SSBM), for $k=2$ equal-sized clusters, in the regime where the graph is
moderately dense.
In this work, we build on the results in [CDGT 2019] on two fronts for the
normalized versions of SPONGE and the Signed Laplacian. Firstly, for both
algorithms, we extend the theoretical analysis in [CDGT 2019] to the general
setting of $k \geq 2$ unequal-sized clusters in the moderately dense regime.
Secondly, we introduce regularized versions of both methods to handle sparse
graphs -- a regime where standard spectral methods underperform -- and provide
theoretical guarantees under the same SSBM model. To the best of our knowledge,
regularized spectral methods have so far not been considered in the setting of
clustering signed graphs. We complement our theoretical results with an
extensive set of numerical experiments on synthetic data.
Related papers
- HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity [55.27586970082595]
HeNCler is a novel approach for Heterophilous Node Clustering.
We show that HeNCler significantly enhances performance in node clustering tasks within heterophilous graph contexts.
arXiv Detail & Related papers (2024-05-27T11:04:05Z) - Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering [22.421702511126373]
We formulate clustering as estimating underlying communities in the directed block model.
We introduce two efficient and interpretable directed clustering algorithms, a spectral clustering algorithm and a semidefinite programming based clustering algorithm.
arXiv Detail & Related papers (2024-03-28T15:47:13Z) - Robustness for Spectral Clustering of General Graphs under Local Differential Privacy [2.4447259440166302]
We argue that social networks do not originate from the block model (SBM)
Our primary focus is the edge flipping method -- a common technique for protecting local differential privacy.
Although clustering outcomes have been stable for dense and well-clustered graphs produced from the SBM, we show that in general, spectral clustering may yield highly erratic results on certain dense and well-clustered graphs.
arXiv Detail & Related papers (2023-09-13T10:23:29Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
Block model is a canonical random graph model for clustering and community detection on network-structured data.
No estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold.
We prove that with an arbitrary fraction of the labels feasible throughout the parameter domain.
arXiv Detail & Related papers (2022-05-24T00:03:25Z) - On consistency of constrained spectral clustering under
representation-aware stochastic block model [20.6072287343024]
We study constrained spectral clustering with the aim of finding balanced clusters in a given textitsimilarity graph $mathcalG$.
We develop unnormalized and normalized variants of spectral clustering in this setting.
These algorithms use $mathcalR$ to find clusters in $mathcalG$ that approximately satisfy the proposed constraint.
arXiv Detail & Related papers (2022-03-03T20:41:14Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Strong Consistency, Graph Laplacians, and the Stochastic Block Model [1.2891210250935143]
We study the performance of classical two-step spectral clustering via the graph Laplacian to learn the block model.
We prove that spectral clustering is able to achieve exact recovery of the planted community structure under conditions that match the information-theoretic limits.
arXiv Detail & Related papers (2020-04-21T07:16:46Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.