論文の概要: Towards Code-switched Classification Exploiting Constituent Language
Resources
- arxiv url: http://arxiv.org/abs/2011.01913v1
- Date: Tue, 3 Nov 2020 18:43:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:02:20.173366
- Title: Towards Code-switched Classification Exploiting Constituent Language
Resources
- Title(参考訳): 構成言語資源のコード変更型分類に向けて
- Authors: Tanvi Dadu and Kartikey Pant
- Abstract要約: 我々は、モノリンガル設定とクロスランガル設定の両方を利用するために、コード切替データを構成言語に変換する。
我々は,英語とヒンディー語における2つの下流タスク,サルカズム検出とヘイトスピーチ検出の実験を行った。
- 参考スコア(独自算出の注目度): 3.655021726150369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code-switching is a commonly observed communicative phenomenon denoting a
shift from one language to another within the same speech exchange. The
analysis of code-switched data often becomes an assiduous task, owing to the
limited availability of data. We propose converting code-switched data into its
constituent high resource languages for exploiting both monolingual and
cross-lingual settings in this work. This conversion allows us to utilize the
higher resource availability for its constituent languages for multiple
downstream tasks.
We perform experiments for two downstream tasks, sarcasm detection and hate
speech detection, in the English-Hindi code-switched setting. These experiments
show an increase in 22% and 42.5% in F1-score for sarcasm detection and hate
speech detection, respectively, compared to the state-of-the-art.
- Abstract(参考訳): コードスイッチング(code-switching)は、ある言語から別の言語への移動を同じ音声交換で示す、一般的に観察されるコミュニケーション現象である。
コード切り換えデータの分析は、データの可用性が限られているため、しばしば明らかなタスクになる。
本研究は,単言語とクロス言語の両方の設定を活用すべく,コード交換されたデータをその構成高リソース言語に変換することを提案する。
この変換により、複数のダウンストリームタスク用の構成言語に対して、より高いリソース可用性を活用できます。
我々は,英語とヒンディー語における2つの下流タスク,サルカズム検出とヘイトスピーチ検出の実験を行った。
これらの実験では, F1スコアの22%と42.5%が, サルカズム検出とヘイトスピーチ検出で増加傾向を示した。
関連論文リスト
- Code-switching in text and speech reveals information-theoretic audience design [5.3329709073809095]
コードスイッチングに影響を与える要因について,言語モデルを用いて検討する。
ある話者が1つの言語(第一言語)と別の言語(第二言語)を交互に話すとき、コードスイッチングが発生する
論文 参考訳(メタデータ) (2024-08-08T17:14:12Z) - CoVoSwitch: Machine Translation of Synthetic Code-Switched Text Based on Intonation Units [0.0]
コードスイッチングデータをPSSTで検出したインネーションユニットに置き換えて合成する。
我々はM2M-100 418MとNLLB-200 600Mの2つの多言語翻訳モデルのコードスイッチング翻訳性能を評価する。
論文 参考訳(メタデータ) (2024-07-19T13:26:35Z) - Zero Resource Code-switched Speech Benchmark Using Speech Utterance Pairs For Multiple Spoken Languages [49.6922490267701]
我々は,自己教師型音声エンコーダのコード切替能力を評価するために,ゼロリソースコード切替音声ベンチマークを導入した。
本稿では,音声エンコーダのコードスイッチング能力を評価するために,離散単位に基づく言語モデリングのベースラインシステムを紹介する。
論文 参考訳(メタデータ) (2023-10-04T17:58:11Z) - Simple yet Effective Code-Switching Language Identification with
Multitask Pre-Training and Transfer Learning [0.7242530499990028]
コードスイッチング(Code-switching)は、カジュアルな設定において、多言語話者が異なる言語の単語を1つの発話で混ぜる言語現象である。
英マンダリン言語指向音声データセットにおける言語識別精度向上のための2つの新しいアプローチを提案する。
我々の最良のモデルでは、実際の英マンダリンのコードスイッチングによる子指向音声コーパスにおいて、0.781のバランスの取れた精度を達成し、以前のベースラインを55.3%上回っている。
論文 参考訳(メタデータ) (2023-05-31T11:43:16Z) - Code-Switching without Switching: Language Agnostic End-to-End Speech
Translation [68.8204255655161]
我々は音声認識と翻訳を一貫したエンドツーエンドの音声翻訳問題として扱う。
LASTを両方の入力言語で訓練することにより、入力言語に関係なく、音声を1つのターゲット言語にデコードする。
論文 参考訳(メタデータ) (2022-10-04T10:34:25Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
言語固有の情報を混在させることにより,両状況に対処する新しい言語対応エンコーダ (LAE) アーキテクチャを提案する。
マンダリン・イングリッシュ・コードスウィッチ音声を用いた実験により,LAEはフレームレベルで異なる言語を識別できることが示唆された。
論文 参考訳(メタデータ) (2022-06-05T04:03:12Z) - Reducing language context confusion for end-to-end code-switching
automatic speech recognition [50.89821865949395]
本稿では,E2E符号スイッチングASRモデルの多言語コンテキストの混同を低減するための言語関連アテンション機構を提案する。
複数の言語のそれぞれの注意を計算することにより、豊かな単言語データから言語知識を効率的に伝達することができる。
論文 参考訳(メタデータ) (2022-01-28T14:39:29Z) - Multilingual and code-switching ASR challenges for low resource Indian
languages [59.2906853285309]
インドの7つの言語に関連する2つのサブタスクを通じて、多言語およびコードスイッチングASRシステムの構築に重点を置いている。
これらの言語では、列車とテストセットからなる600時間分の音声データを合計で提供します。
また,マルチリンガルサブタスクとコードスイッチサブタスクのテストセットでは,それぞれ30.73%と32.45%という,タスクのベースラインレシピも提供しています。
論文 参考訳(メタデータ) (2021-04-01T03:37:01Z) - Transformer-Transducers for Code-Switched Speech Recognition [23.281314397784346]
コード切替音声認識のためのトランスフォーマー・トランスデューサモデルアーキテクチャを用いたエンドツーエンドのASRシステムを提案する。
まず、コードスイッチングの低リソースシナリオを扱うために、2つの補助損失関数を導入する。
第二に,言語ID情報を用いた新しいマスクベースのトレーニング戦略を提案し,文内コードスイッチングに向けたラベルエンコーダのトレーニングを改善する。
論文 参考訳(メタデータ) (2020-11-30T17:27:41Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
低リソース環境下でのコード切替音声認識システムにおける学習を伝達するメタトランスファー学習法を提案する。
本モデルでは,コードスイッチングデータに最適化を条件付けることにより,個々の言語を識別し,混合言語音声をよりよく認識できるように変換する。
論文 参考訳(メタデータ) (2020-04-29T14:27:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。