Mixing Consistent Deep Clustering
- URL: http://arxiv.org/abs/2011.01977v1
- Date: Tue, 3 Nov 2020 19:47:06 GMT
- Title: Mixing Consistent Deep Clustering
- Authors: Daniel Lutscher, Ali el Hassouni, Maarten Stol, Mark Hoogendoorn
- Abstract summary: Good latent representations produce semantically mixed outputs when decoding linears of two latent representations.
We propose the Mixing Consistent Deep Clustering method which encourages representations to appear realistic.
We show that the proposed method can be added to existing autoencoders to further improve clustering performance.
- Score: 3.5786621294068373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding well-defined clusters in data represents a fundamental challenge for
many data-driven applications, and largely depends on good data representation.
Drawing on literature regarding representation learning, studies suggest that
one key characteristic of good latent representations is the ability to produce
semantically mixed outputs when decoding linear interpolations of two latent
representations. We propose the Mixing Consistent Deep Clustering method which
encourages interpolations to appear realistic while adding the constraint that
interpolations of two data points must look like one of the two inputs. By
applying this training method to various clustering (non-)specific autoencoder
models we found that using the proposed training method systematically changed
the structure of learned representations of a model and it improved clustering
performance for the tested ACAI, IDEC, and VAE models on the MNIST, SVHN, and
CIFAR-10 datasets. These outcomes have practical implications for numerous
real-world clustering tasks, as it shows that the proposed method can be added
to existing autoencoders to further improve clustering performance.
Related papers
- Dual Advancement of Representation Learning and Clustering for Sparse and Noisy Images [14.836487514037994]
Sparse and noisy images (SNIs) pose significant challenges for effective representation learning and clustering.
We propose Dual Advancement of Representation Learning and Clustering (DARLC) to enhance the representations derived from masked image modeling.
Our framework offers a comprehensive approach that improves the learning of representations by enhancing their local perceptibility, distinctiveness, and the understanding of relational semantics.
arXiv Detail & Related papers (2024-09-03T10:52:27Z) - Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
We propose an end-to-end deep learning-based MVC framework for general data.
Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective.
We demonstrate the effectiveness of our model using ten MVC benchmark datasets.
arXiv Detail & Related papers (2024-02-26T08:08:30Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
We propose a deep fusion network to fuse view-specific representations into the view-common representation.
We also design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation.
In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors.
arXiv Detail & Related papers (2022-12-28T07:21:05Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
We propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category.
Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model.
We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions.
arXiv Detail & Related papers (2022-04-08T00:55:15Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.