Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization
- URL: http://arxiv.org/abs/2202.01334v1
- Date: Wed, 2 Feb 2022 23:54:26 GMT
- Title: Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization
- Authors: Dianbo Liu, Alex Lamb, Xu Ji, Pascal Notsawo, Mike Mozer, Yoshua
Bengio, Kenji Kawaguchi
- Abstract summary: We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
- Score: 76.68866368409216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vector Quantization (VQ) is a method for discretizing latent representations
and has become a major part of the deep learning toolkit. It has been
theoretically and empirically shown that discretization of representations
leads to improved generalization, including in reinforcement learning where
discretization can be used to bottleneck multi-agent communication to promote
agent specialization and robustness. The discretization tightness of most
VQ-based methods is defined by the number of discrete codes in the
representation vector and the codebook size, which are fixed as
hyperparameters. In this work, we propose learning to dynamically select
discretization tightness conditioned on inputs, based on the hypothesis that
data naturally contains variations in complexity that call for different levels
of representational coarseness. We show that dynamically varying tightness in
communication bottlenecks can improve model performance on visual reasoning and
reinforcement learning tasks.
Related papers
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
We propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model.
We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement.
Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning.
arXiv Detail & Related papers (2024-09-23T09:33:53Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders [0.0]
We argue that continuous variables may not be ideal to model features of textual data, due to the fact that most generative factors in text are discrete.
We propose a Variational Autoencoder based method which models language features as discrete variables and encourages independence between variables for learning disentangled representations.
arXiv Detail & Related papers (2021-09-15T09:10:05Z) - Discrete-Valued Neural Communication [85.3675647398994]
We show that restricting the transmitted information among components to discrete representations is a beneficial bottleneck.
Even though individuals have different understandings of what a "cat" is based on their specific experiences, the shared discrete token makes it possible for communication among individuals to be unimpeded by individual differences in internal representation.
We extend the quantization mechanism from the Vector-Quantized Variational Autoencoder to multi-headed discretization with shared codebooks and use it for discrete-valued neural communication.
arXiv Detail & Related papers (2021-07-06T03:09:25Z) - Robust Training of Vector Quantized Bottleneck Models [21.540133031071438]
We demonstrate methods for reliable and efficient training of discrete representation using Vector-Quantized Variational Auto-Encoder models (VQ-VAEs)
For unsupervised representation learning, they became viable alternatives to continuous latent variable models such as the Variational Auto-Encoder (VAE)
arXiv Detail & Related papers (2020-05-18T08:23:41Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.