Single Image Human Proxemics Estimation for Visual Social Distancing
- URL: http://arxiv.org/abs/2011.02018v2
- Date: Thu, 5 Nov 2020 14:13:24 GMT
- Title: Single Image Human Proxemics Estimation for Visual Social Distancing
- Authors: Maya Aghaei, Matteo Bustreo, Yiming Wang, Gianluca Bailo, Pietro
Morerio, Alessio Del Bue
- Abstract summary: We propose a semi-automatic solution to approximate the homography matrix between the scene ground and image plane.
We then leverage an off-the-shelf pose detector to detect body poses on the image and to reason upon their inter-personal distances.
- Score: 37.84559773949066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the problem of estimating the so-called "Social
Distancing" given a single uncalibrated image in unconstrained scenarios. Our
approach proposes a semi-automatic solution to approximate the homography
matrix between the scene ground and image plane. With the estimated homography,
we then leverage an off-the-shelf pose detector to detect body poses on the
image and to reason upon their inter-personal distances using the length of
their body-parts. Inter-personal distances are further locally inspected to
detect possible violations of the social distancing rules. We validate our
proposed method quantitatively and qualitatively against baselines on public
domain datasets for which we provided groundtruth on inter-personal distances.
Besides, we demonstrate the application of our method deployed in a real
testing scenario where statistics on the inter-personal distances are currently
used to improve the safety in a critical environment.
Related papers
- View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - Monitoring social distancing with single image depth estimation [39.79652626235862]
Single image depth estimation can be a viable alternative to other depth perception techniques.
Our framework can run reasonably fast and comparably to competitors, even on pure CPU systems.
arXiv Detail & Related papers (2022-04-04T17:58:02Z) - BEV-Net: Assessing Social Distancing Compliance by Joint People
Localization and Geometric Reasoning [77.08836528980248]
Social distancing, an essential public health measure, has gained significant attention since the outbreak of the COVID-19 pandemic.
In this work, the problem of visual social distancing compliance assessment in busy public areas with wide field-of-view cameras is considered.
A dataset of crowd scenes with people annotations under a bird's eye view (BEV) and ground truth for metric distances is introduced.
A multi-branch network, BEV-Net, is proposed to localize individuals in world coordinates and identify high-risk regions where social distancing is violated.
arXiv Detail & Related papers (2021-10-10T23:56:37Z) - Towards Accurate Cross-Domain In-Bed Human Pose Estimation [3.685548851716087]
Long-wavelength infrared (LWIR) modality based pose estimation algorithms overcome the aforementioned challenges.
We propose a novel learning strategy comprises of two-fold data augmentation to reduce the cross-domain discrepancy.
Our experiments and analysis show the effectiveness of our approach over multiple standard human pose estimation baselines.
arXiv Detail & Related papers (2021-10-07T15:54:46Z) - Single View Physical Distance Estimation using Human Pose [18.9877515094788]
We propose a fully automated system that simultaneously estimates the camera intrinsics, the ground plane, and physical distances between people from a single RGB image or video.
The proposed approach enables existing camera systems to measure physical distances without needing a dedicated calibration process or range sensors.
We contribute to the publicly available MEVA dataset with additional distance annotations, resulting in MEVADA -- the first evaluation benchmark in the world for the pose-based auto-calibration and distance estimation problem.
arXiv Detail & Related papers (2021-06-18T19:50:40Z) - Perceptual Loss for Robust Unsupervised Homography Estimation [1.2891210250935146]
BiHomE minimizes the distance in the feature space between the warped image from the source viewpoint and the corresponding image from the target viewpoint.
We show that biHomE achieves state-of-the-art performance on synthetic COCO dataset, which is also comparable or better compared to supervised approaches.
arXiv Detail & Related papers (2021-04-20T14:41:54Z) - Automatic Social Distance Estimation From Images: Performance
Evaluation, Test Benchmark, and Algorithm [78.88882860340797]
COVID-19 virus has caused a global pandemic since March 2020.
Maintaining a minimum of one meter distance from other people is strongly suggested to reduce the risk of infection.
There is no suitable test benchmark for such algorithms.
arXiv Detail & Related papers (2021-03-11T16:15:20Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
We present a method to leverage photometric consistency across time when annotations are only available for a sparse subset of frames in a video.
Our model is trained end-to-end on color images to jointly reconstruct hands and objects in 3D by inferring their poses.
We achieve state-of-the-art results on 3D hand-object reconstruction benchmarks and demonstrate that our approach allows us to improve the pose estimation accuracy.
arXiv Detail & Related papers (2020-04-28T12:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.