Monitoring social distancing with single image depth estimation
- URL: http://arxiv.org/abs/2204.01693v1
- Date: Mon, 4 Apr 2022 17:58:02 GMT
- Title: Monitoring social distancing with single image depth estimation
- Authors: Alessio Mingozzi, Andrea Conti, Filippo Aleotti, Matteo Poggi, Stefano
Mattoccia
- Abstract summary: Single image depth estimation can be a viable alternative to other depth perception techniques.
Our framework can run reasonably fast and comparably to competitors, even on pure CPU systems.
- Score: 39.79652626235862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent pandemic emergency raised many challenges regarding the
countermeasures aimed at containing the virus spread, and constraining the
minimum distance between people resulted in one of the most effective
strategies. Thus, the implementation of autonomous systems capable of
monitoring the so-called social distance gained much interest. In this paper,
we aim to address this task leveraging a single RGB frame without additional
depth sensors. In contrast to existing single-image alternatives failing when
ground localization is not available, we rely on single image depth estimation
to perceive the 3D structure of the observed scene and estimate the distance
between people. During the setup phase, a straightforward calibration
procedure, leveraging a scale-aware SLAM algorithm available even on consumer
smartphones, allows us to address the scale ambiguity affecting single image
depth estimation. We validate our approach through indoor and outdoor images
employing a calibrated LiDAR + RGB camera asset. Experimental results highlight
that our proposal enables sufficiently reliable estimation of the
inter-personal distance to monitor social distancing effectively. This fact
confirms that despite its intrinsic ambiguity, if appropriately driven single
image depth estimation can be a viable alternative to other depth perception
techniques, more expensive and not always feasible in practical applications.
Our evaluation also highlights that our framework can run reasonably fast and
comparably to competitors, even on pure CPU systems. Moreover, its practical
deployment on low-power systems is around the corner.
Related papers
- SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
arXiv Detail & Related papers (2024-07-07T06:52:51Z) - Match and Locate: low-frequency monocular odometry based on deep feature
matching [0.65268245109828]
We introduce a novel approach for the robotic odometry which only requires a single camera.
The approach is based on matching image features between the consecutive frames of the video stream using deep feature matching models.
We evaluate the performance of the approach in the AISG-SLA Visual Localisation Challenge and find that while being computationally efficient and easy to implement our method shows competitive results.
arXiv Detail & Related papers (2023-11-16T17:32:58Z) - Robust Self-Supervised Extrinsic Self-Calibration [25.727912226753247]
Multi-camera self-supervised monocular depth estimation from videos is a promising way to reason about the environment.
We introduce a novel method for extrinsic calibration that builds upon the principles of self-supervised monocular depth and ego-motion learning.
arXiv Detail & Related papers (2023-08-04T06:20:20Z) - A Distance-Geometric Method for Recovering Robot Joint Angles From an
RGB Image [7.971699294672282]
We present a novel method for retrieving the joint angles of a robot manipulator using only a single RGB image of its current configuration.
Our approach, based on a distance-geometric representation of the configuration space, exploits the knowledge of a robot's kinematic model.
arXiv Detail & Related papers (2023-01-05T12:57:45Z) - Event Guided Depth Sensing [50.997474285910734]
We present an efficient bio-inspired event-camera-driven depth estimation algorithm.
In our approach, we illuminate areas of interest densely, depending on the scene activity detected by the event camera.
We show the feasibility of our approach in a simulated autonomous driving sequences and real indoor environments.
arXiv Detail & Related papers (2021-10-20T11:41:11Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Single Image Human Proxemics Estimation for Visual Social Distancing [37.84559773949066]
We propose a semi-automatic solution to approximate the homography matrix between the scene ground and image plane.
We then leverage an off-the-shelf pose detector to detect body poses on the image and to reason upon their inter-personal distances.
arXiv Detail & Related papers (2020-11-03T21:49:13Z) - Perceiving Humans: from Monocular 3D Localization to Social Distancing [93.03056743850141]
We present a new cost-effective vision-based method that perceives humans' locations in 3D and their body orientation from a single image.
We show that it is possible to rethink the concept of "social distancing" as a form of social interaction in contrast to a simple location-based rule.
arXiv Detail & Related papers (2020-09-01T10:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.