論文の概要: SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End
Simultaneous Speech Translation
- arxiv url: http://arxiv.org/abs/2011.02048v1
- Date: Tue, 3 Nov 2020 22:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:02:06.007055
- Title: SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End
Simultaneous Speech Translation
- Title(参考訳): SimulMT to SimulST: エンドツーエンドの同時音声翻訳に同時テキスト翻訳を適用する
- Authors: Xutai Ma, Juan Pino, Philipp Koehn
- Abstract要約: テキストの同時翻訳とエンドツーエンドの音声翻訳は、最近大きな進歩を遂げているが、これらのタスクを組み合わさった作業はほとんどない。
我々は,事前決定モジュールを導入することで,待ち時間や単調マルチヘッドといった同時テキスト翻訳手法をエンドツーエンドの同時音声翻訳に適応させる方法について検討する。
固定およびフレキシブルな事前決定と固定およびフレキシブルなポリシーを組み合わせることで、レイテンシ品質のトレードオフを詳細に分析する。
- 参考スコア(独自算出の注目度): 23.685648804345984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous text translation and end-to-end speech translation have recently
made great progress but little work has combined these tasks together. We
investigate how to adapt simultaneous text translation methods such as wait-k
and monotonic multihead attention to end-to-end simultaneous speech translation
by introducing a pre-decision module. A detailed analysis is provided on the
latency-quality trade-offs of combining fixed and flexible pre-decision with
fixed and flexible policies. We also design a novel computation-aware latency
metric, adapted from Average Lagging.
- Abstract(参考訳): テキスト翻訳とエンドツーエンドの音声翻訳は、最近大きな進歩を遂げているが、これらのタスクを組み合わせた作業はほとんどない。
我々は,事前決定モジュールを導入することで,待ち時間や単調マルチヘッドといった同時テキスト翻訳手法をエンドツーエンドの同時音声翻訳に適用する方法を検討する。
固定およびフレキシブルな事前決定と固定およびフレキシブルなポリシーを組み合わせることで、レイテンシ品質のトレードオフを詳細に分析する。
また、Average Laggingから適応した新しい計算対応レイテンシメトリックも設計する。
関連論文リスト
- A Non-autoregressive Generation Framework for End-to-End Simultaneous Speech-to-Speech Translation [48.84039953531355]
同時音声翻訳のための新しい非自己回帰生成フレームワーク(NAST-S2X)を提案する。
NAST-S2Xは、音声テキストと音声音声タスクを統合エンドツーエンドフレームワークに統合する。
3秒未満の遅延で高品質な同時解釈を実現し、オフライン生成において28倍のデコードスピードアップを提供する。
論文 参考訳(メタデータ) (2024-06-11T04:25:48Z) - Shiftable Context: Addressing Training-Inference Context Mismatch in
Simultaneous Speech Translation [0.17188280334580192]
セグメントベース処理を用いたトランスフォーマーモデルは、同時音声翻訳に有効なアーキテクチャである。
トレーニングと推論を通じて一貫したセグメントとコンテキストサイズを確実に維持するために、シフト可能なコンテキストを提案する。
論文 参考訳(メタデータ) (2023-07-03T22:11:51Z) - M-Adapter: Modality Adaptation for End-to-End Speech-to-Text Translation [66.92823764664206]
テキストに音声表現を適応させる新しいトランスフォーマーベースのモジュールであるM-Adapterを提案する。
音声シーケンスを縮小しながら、M-Adapterは音声からテキストへの翻訳に必要な機能を生成する。
実験の結果,我々のモデルは最大1BLEUで強いベースラインを達成できた。
論文 参考訳(メタデータ) (2022-07-03T04:26:53Z) - Data-Driven Adaptive Simultaneous Machine Translation [51.01779863078624]
適応型SimulMTのための新しい,効率的なトレーニング手法を提案する。
本手法は,翻訳の質やレイテンシという点で,全ての強靭なベースラインを上回ります。
論文 参考訳(メタデータ) (2022-04-27T02:40:21Z) - STEMM: Self-learning with Speech-text Manifold Mixup for Speech
Translation [37.51435498386953]
本稿では,その差分を補正するSTEMM法を提案する。
MuST-C音声翻訳ベンチマークおよびさらなる解析実験により,本手法はモーダル表現の不一致を効果的に軽減することが示された。
論文 参考訳(メタデータ) (2022-03-20T01:49:53Z) - Anticipation-free Training for Simultaneous Translation [70.85761141178597]
同時翻訳(SimulMT)は、原文が完全に利用可能になる前に翻訳を開始することで翻訳プロセスを高速化する。
既存の手法は遅延を増大させるか、SimulMTモデルに適応的な読み書きポリシーを導入し、局所的なリオーダーを処理し、翻訳品質を改善する。
本稿では,翻訳過程をモノトニック翻訳ステップと並べ替えステップに分解する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-30T16:29:37Z) - RealTranS: End-to-End Simultaneous Speech Translation with Convolutional
Weighted-Shrinking Transformer [33.876412404781846]
RealTranSは、同時音声翻訳のためのエンドツーエンドモデルである。
音声特徴を重み付き収縮操作と意味エンコーダでテキスト空間にマッピングする。
実験により、Wait-K-Stride-N戦略を用いたRealTranSは、従来のエンドツーエンドモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-09T06:35:46Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z) - SimulEval: An Evaluation Toolkit for Simultaneous Translation [59.02724214432792]
テキストと音声の同時翻訳は、リアルタイムと低レイテンシのシナリオに焦点を当てている。
SimulEvalは、テキストと音声の同時翻訳のための、使いやすくて汎用的な評価ツールキットである。
論文 参考訳(メタデータ) (2020-07-31T17:44:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。