Optimal Control-Based Baseline for Guided Exploration in Policy Gradient Methods
- URL: http://arxiv.org/abs/2011.02073v5
- Date: Wed, 06 Nov 2024 01:14:09 GMT
- Title: Optimal Control-Based Baseline for Guided Exploration in Policy Gradient Methods
- Authors: Xubo Lyu, Site Li, Seth Siriya, Ye Pu, Mo Chen,
- Abstract summary: In this paper, a novel optimal control-based baseline function is presented for the policy gradient method in deep reinforcement learning.
We validate our baseline on robot learning tasks, showing its effectiveness in guided exploration.
- Score: 8.718494948845711
- License:
- Abstract: In this paper, a novel optimal control-based baseline function is presented for the policy gradient method in deep reinforcement learning (RL). The baseline is obtained by computing the value function of an optimal control problem, which is formed to be closely associated with the RL task. In contrast to the traditional baseline aimed at variance reduction of policy gradient estimates, our work utilizes the optimal control value function to introduce a novel aspect to the role of baseline -- providing guided exploration during policy learning. This aspect is less discussed in prior works. We validate our baseline on robot learning tasks, showing its effectiveness in guided exploration, particularly in sparse reward environments.
Related papers
- Preference-Guided Reinforcement Learning for Efficient Exploration [7.83845308102632]
We introduce LOPE: Learning Online with trajectory Preference guidancE, an end-to-end preference-guided RL framework.
Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance.
LOPE outperforms several state-of-the-art methods regarding convergence rate and overall performance.
arXiv Detail & Related papers (2024-07-09T02:11:12Z) - Off-OAB: Off-Policy Policy Gradient Method with Optimal Action-Dependent Baseline [47.16115174891401]
We propose an off-policy policy gradient method with the optimal action-dependent baseline (Off-OAB) to mitigate this variance issue.
We evaluate the proposed Off-OAB method on six representative tasks from OpenAI Gym and MuJoCo, where it demonstrably surpasses state-of-the-art methods on the majority of these tasks.
arXiv Detail & Related papers (2024-05-04T05:21:28Z) - Discovering Behavioral Modes in Deep Reinforcement Learning Policies
Using Trajectory Clustering in Latent Space [0.0]
We introduce a new approach for investigating the behavior modes of DRL policies.
Specifically, we use Pairwise Controlled Manifold Approximation Projection (PaCMAP) for dimensionality reduction and TRACLUS for trajectory clustering.
Our methodology helps identify diverse behavior patterns and suboptimal choices by the policy, thus allowing for targeted improvements.
arXiv Detail & Related papers (2024-02-20T11:50:50Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Policy Gradient for Reinforcement Learning with General Utilities [50.65940899590487]
In Reinforcement Learning (RL), the goal of agents is to discover an optimal policy that maximizes the expected cumulative rewards.
Many supervised and unsupervised RL problems are not covered in the Linear RL framework.
We derive the policy gradient theorem for RL with general utilities.
arXiv Detail & Related papers (2022-10-03T14:57:46Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Improving Actor-Critic Reinforcement Learning via Hamiltonian Policy [11.34520632697191]
Approximating optimal policies in reinforcement learning (RL) is often necessary in many real-world scenarios.
In this work, inspired by the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to integrate policy optimization with HMC.
We show that the proposed approach is a data-efficient, and an easy-to-implement improvement over previous policy optimization methods.
arXiv Detail & Related papers (2021-03-22T17:26:43Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - Inverse Reinforcement Learning from a Gradient-based Learner [41.8663538249537]
Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations.
In this paper, we propose a new algorithm for this setting, in which the goal is to recover the reward function being optimized by an agent.
arXiv Detail & Related papers (2020-07-15T16:41:00Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.