論文の概要: Few-Shot Font Generation with Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2011.02206v1
- Date: Wed, 4 Nov 2020 10:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 22:24:31.097962
- Title: Few-Shot Font Generation with Deep Metric Learning
- Title(参考訳): Deep Metric Learningを用いたFew-Shot Font生成
- Authors: Haruka Aoki, Koki Tsubota, Hikaru Ikuta, Kiyoharu Aizawa
- Abstract要約: 提案するフレームワークは、スタイルエンコーダにディープメトリック学習を導入している。
白黒フォントと形状識別フォントのデータセットを用いて実験を行った。
- 参考スコア(独自算出の注目度): 33.12829580813688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing fonts for languages with a large number of characters, such as
Japanese and Chinese, is an extremely labor-intensive and time-consuming task.
In this study, we addressed the problem of automatically generating Japanese
typographic fonts from only a few font samples, where the synthesized glyphs
are expected to have coherent characteristics, such as skeletons, contours, and
serifs. Existing methods often fail to generate fine glyph images when the
number of style reference glyphs is extremely limited. Herein, we proposed a
simple but powerful framework for extracting better style features. This
framework introduces deep metric learning to style encoders. We performed
experiments using black-and-white and shape-distinctive font datasets and
demonstrated the effectiveness of the proposed framework.
- Abstract(参考訳): 日本語や中国語など多数の文字を持つ言語のフォントを設計することは、非常に労働集約的で時間を要する作業である。
本研究では,合成グリフが骨格,輪郭,セリフなどのコヒーレントな特徴を有することが期待される数種類のフォントサンプルから,日本語フォントを自動的に生成する問題に対処する。
既存の手法では、スタイル参照グリフの数が非常に限られている場合、微細グリフ画像の生成に失敗することが多い。
そこで我々は,より優れたスタイル機能を抽出するためのシンプルで強力なフレームワークを提案する。
このフレームワークは、スタイルエンコーダにディープメトリック学習を導入する。
提案フレームワークの有効性を実証するために,白黒および形状識別フォントデータセットを用いた実験を行った。
関連論文リスト
- Decoupling Layout from Glyph in Online Chinese Handwriting Generation [6.566541829858544]
テキスト行レイアウト生成器とスタイル化フォント合成器を開発した。
レイアウトジェネレータは、テキスト内容と提供されたスタイル参照に基づいて、コンテキスト内学習を行い、各グリフに対する位置を自己回帰的に生成する。
文字埋め込み辞書、マルチスケールの書体スタイルエンコーダ、及び1DのU-Netベースの拡散デノイザからなるフォントシンセサイザは、所定のスタイル参照から抽出された書体スタイルを模倣しつつ、その位置に各フォントを生成する。
論文 参考訳(メタデータ) (2024-10-03T08:46:17Z) - DeepCalliFont: Few-shot Chinese Calligraphy Font Synthesis by
Integrating Dual-modality Generative Models [20.76773399161289]
特に中国語のフォントのフォント生成は困難で、進行中の課題である。
本稿では,2つのモダリティ生成モデルを統合することで,数ショットの漢字フォント合成のための新しいモデルDeepCalliFontを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:23:12Z) - VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
本稿では,VQGANベースのフレームワーク(VQ-Font)を提案する。
具体的には、コードブック内でフォントトークンをカプセル化するために、VQGANを事前訓練する。その後、VQ-Fontは、合成したグリフをコードブックで洗練し、合成されたストロークと実世界のストロークのドメインギャップをなくす。
論文 参考訳(メタデータ) (2023-08-27T06:32:20Z) - Few-shot Font Generation by Learning Style Difference and Similarity [84.76381937516356]
異なるスタイルの違いと同一スタイルの類似性(DS-Font)を学習する新しいフォント生成手法を提案する。
具体的には,提案するクラスタレベルコントラシブ・スタイル(CCS)の損失により,スタイルエンコーディングを実現する多層型プロジェクタを提案する。
論文 参考訳(メタデータ) (2023-01-24T13:57:25Z) - Diff-Font: Diffusion Model for Robust One-Shot Font Generation [110.45944936952309]
Diff-Fontという拡散モデルに基づく新しいワンショットフォント生成手法を提案する。
提案するモデルは,フォントライブラリ全体を生成することを目的として,参照として1つのサンプルのみを与える。
十分に訓練されたDiff-Fontは、フォントギャップやフォントのバリエーションに対して堅牢であるだけでなく、難しい文字生成において有望なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-12-12T13:51:50Z) - Few-Shot Font Generation by Learning Fine-Grained Local Styles [90.39288370855115]
フラッシュショットフォント生成(FFG)は、いくつかの例で新しいフォントを生成することを目的としている。
提案手法は,1)参照からきめ細かな局所スタイルを学習し,2)コンテンツと参照グリフの空間的対応を学習するフォント生成手法である。
論文 参考訳(メタデータ) (2022-05-20T05:07:05Z) - Scalable Font Reconstruction with Dual Latent Manifolds [55.29525824849242]
タイポグラフィー解析とフォント再構成を行う深層生成モデルを提案する。
このアプローチによって、効果的にモデル化できるキャラクタの種類を大規模にスケールアップすることが可能になります。
多くの言語の文字タイプを表す様々なデータセット上でフォント再構成のタスクを評価する。
論文 参考訳(メタデータ) (2021-09-10T20:37:43Z) - ZiGAN: Fine-grained Chinese Calligraphy Font Generation via a Few-shot
Style Transfer Approach [7.318027179922774]
ZiGANは、強力なエンドツーエンドの漢字フォント生成フレームワークである。
微粒なターゲットスタイルの文字を生成するために手動操作や冗長な前処理を一切必要としない。
提案手法は,数発の漢字スタイル転送における最先端の一般化能力を有する。
論文 参考訳(メタデータ) (2021-08-08T09:50:20Z) - A Multi-Implicit Neural Representation for Fonts [79.6123184198301]
エッジやコーナーのようなフォント固有の不連続性は、ニューラルネットワークを使って表現することが難しい。
そこで我々は,フォントを文順に表現するためのtextitmulti-implicitsを導入する。
論文 参考訳(メタデータ) (2021-06-12T21:40:11Z) - Few-shot Font Generation with Localized Style Representations and
Factorization [23.781619323447003]
ユニバーサルスタイルの代わりに,局所化スタイル,すなわちコンポーネントワイドスタイル表現を学習し,新しいフォント生成手法を提案する。
提案手法は,8つの基準グリフ画像しか持たない少数のフォント生成結果が,他の最先端のフォントよりも著しく優れていることを示す。
論文 参考訳(メタデータ) (2020-09-23T10:33:01Z) - Few-shot Compositional Font Generation with Dual Memory [16.967987801167514]
我々は、新しいフォント生成フレームワークDual Memory-augmented Font Generation Network (DM-Font)を提案する。
我々は、構成性を活用するために、メモリコンポーネントとグローバルコンテキスト認識をジェネレータに採用する。
韓国手書きフォントとタイ手書きフォントの実験では,本手法が忠実なスタイリングによるサンプルの品質を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-05-21T08:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。