論文の概要: VLEngagement: A Dataset of Scientific Video Lectures for Evaluating
Population-based Engagement
- arxiv url: http://arxiv.org/abs/2011.02273v1
- Date: Mon, 2 Nov 2020 14:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 11:40:22.797719
- Title: VLEngagement: A Dataset of Scientific Video Lectures for Evaluating
Population-based Engagement
- Title(参考訳): VLEngagement:人口ベースエンゲージメント評価のための科学ビデオ講義のデータセット
- Authors: Sahan Bulathwela and Maria Perez-Ortiz and Emine Yilmaz and John
Shawe-Taylor
- Abstract要約: ビデオ講義は、現在のデジタル時代の大衆に知識を与える主要なモダリティの1つとなっている。
科学ビデオ講義における学習者の関与を理解することを目的としたデータと研究は依然として重要なニーズである。
本稿では,VLEngagementについて紹介する。VLEngagementは,公開科学ビデオ講義から抽出したコンテンツベースおよびビデオ特有の特徴からなる,新しいデータセットである。
- 参考スコア(独自算出の注目度): 23.078055803229912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the emergence of e-learning and personalised education, the production
and distribution of digital educational resources have boomed. Video lectures
have now become one of the primary modalities to impart knowledge to masses in
the current digital age. The rapid creation of video lecture content challenges
the currently established human-centred moderation and quality assurance
pipeline, demanding for more efficient, scalable and automatic solutions for
managing learning resources. Although a few datasets related to engagement with
educational videos exist, there is still an important need for data and
research aimed at understanding learner engagement with scientific video
lectures. This paper introduces VLEngagement, a novel dataset that consists of
content-based and video-specific features extracted from publicly available
scientific video lectures and several metrics related to user engagement. We
introduce several novel tasks related to predicting and understanding
context-agnostic engagement in video lectures, providing preliminary baselines.
This is the largest and most diverse publicly available dataset to our
knowledge that deals with such tasks. The extraction of Wikipedia topic-based
features also allows associating more sophisticated Wikipedia based features to
the dataset to improve the performance in these tasks. The dataset, helper
tools and example code snippets are available publicly at
https://github.com/sahanbull/context-agnostic-engagement
- Abstract(参考訳): eラーニングやパーソナライズド教育の出現に伴い、デジタル教育資源の生産と流通が盛んになった。
ビデオ講義は、現在デジタル時代の大衆に知識を与える主要なモダリティの1つとなっている。
講義コンテンツの迅速な作成は、現在確立されている人間中心のモデレーションと品質保証パイプラインに挑戦し、学習リソースを管理するためのより効率的でスケーラブルで自動的なソリューションを要求する。
教育ビデオへのエンゲージメントに関連するデータセットはいくつか存在するが、学術ビデオ講義における学習者エンゲージメントを理解することを目的としたデータや研究は依然として重要なニーズである。
本稿では,VLEngagementについて紹介する。VLEngagementは,公開科学ビデオ講義から抽出したコンテンツベースおよびビデオ特有の特徴と,ユーザエンゲージメントに関連するいくつかの指標からなる新しいデータセットである。
本稿では,ビデオ講義における文脈に依存しないエンゲージメントの予測と理解に関する新しいタスクを紹介し,予備的ベースラインを提供する。
このようなタスクを扱う私たちの知識では、これは最大かつ最も多様な公開データセットです。
Wikipediaトピックベースの機能を抽出することで、より洗練されたウィキペディアベースの機能をデータセットに関連付けることで、これらのタスクのパフォーマンスを向上させることもできる。
データセット、ヘルパーツール、サンプルコードスニペットはhttps://github.com/sahanbull/context-agnostic-engagementで公開されている。
関連論文リスト
- ViLCo-Bench: VIdeo Language COntinual learning Benchmark [8.660555226687098]
ビデオテキストタスクの連続学習モデルを評価するために設計されたViLCo-Benchを提案する。
データセットは10分間のビデオと、公開されているデータセットから収集された対応する言語クエリで構成されている。
本稿では,自己教師付き学習を取り入れ,長期記憶効果と短期記憶効果を模倣する新しい記憶効率フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-19T00:38:19Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
我々は、CinePileという新しいデータセットとベンチマークを提示する。
包括的データセットは305,000の多重選択質問(MCQ)から構成されており、様々な視覚的・マルチモーダル的な側面をカバーしている。
トレーニングスプリットに関して、オープンソースのVideo-LLMを微調整し、データセットのテストスプリット上で、オープンソースとプロプライエタリなビデオ中心LLMの両方を評価しました。
論文 参考訳(メタデータ) (2024-05-14T17:59:02Z) - InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding
and Generation [90.71796406228265]
InternVidは大規模なビデオ中心のマルチモーダルデータセットで、強力で転送可能なビデオテキスト表現の学習を可能にする。
InternVidデータセットは700万本以上のビデオが760万時間近く持続し、合計4.1Bワードの詳細な記述を伴う234万本のビデオクリップが生成される。
論文 参考訳(メタデータ) (2023-07-13T17:58:32Z) - A Unified Model for Video Understanding and Knowledge Embedding with
Heterogeneous Knowledge Graph Dataset [47.805378137676605]
マルチモーダルビデオエンティティと実りある常識関係を含む異種データセットを提案する。
実験により,映像理解の埋め込みと事実知識を組み合わせることで,コンテンツに基づく映像検索性能が向上することが示唆された。
また、VRTやVRVタスクにおいて従来のKGEベースの手法よりも優れた知識グラフの埋め込みを生成するのに役立つ。
論文 参考訳(メタデータ) (2022-11-19T09:00:45Z) - PEEK: A Large Dataset of Learner Engagement with Educational Videos [20.49299110732228]
我々は,教育ビデオに携わる学習者の大規模な新しいデータセットをリリースする。
このデータセットはPEEK(Personalized Educational Engagement with Knowledge Topics)と名付けられたもので、この性質について初めて公開されたデータセットである。
学習者のエンゲージメントの信号は、リッチなコンテンツ表現と一致して、強力なパーソナライズアルゴリズムを構築するための道を開くだろうと考えています。
論文 参考訳(メタデータ) (2021-09-03T11:23:02Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。
ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (2021-07-02T15:51:07Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUEベンチマークは、幅広いビデオジャンル、ビデオの長さ、データボリューム、タスクの難易度をカバーすることを目的としている。
大規模なVidL事前学習による各種ベースライン法の評価を行った。
我々の最高のモデルと人間のパフォーマンスの間の大きなギャップは、先進的なVidLモデルの将来の研究を要求する。
論文 参考訳(メタデータ) (2021-06-08T18:34:21Z) - Classification of Important Segments in Educational Videos using
Multimodal Features [10.175871202841346]
本稿では,最先端の音声・視覚・テキスト機能を利用したマルチモーダルニューラルアーキテクチャを提案する。
本実験では,視覚的・時間的情報の影響と,重大予測に対するマルチモーダル特徴の組み合わせについて検討した。
論文 参考訳(メタデータ) (2020-10-26T14:40:23Z) - Comprehensive Instructional Video Analysis: The COIN Dataset and
Performance Evaluation [100.68317848808327]
包括的インストラクショナルビデオ解析のための大規模データセット「COIN」を提案する。
COINデータセットには、日々の生活に関連する12の領域で180のタスクの11,827の動画が含まれている。
新しい開発ツールボックスでは、すべてのビデオに一連のステップラベルと対応する時間境界がアノテートされる。
論文 参考訳(メタデータ) (2020-03-20T16:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。