論文の概要: Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
- arxiv url: http://arxiv.org/abs/2011.02281v1
- Date: Wed, 4 Nov 2020 13:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 23:16:02.827427
- Title: Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
- Title(参考訳): 畳み込み近位ニューラルネットワークとプラグアンドプレイアルゴリズム
- Authors: Johannes Hertrich and Sebastian Neumayer and Gabriele Steidl
- Abstract要約: 本稿では,畳み込み近位ニューラルネットワーク(cPNN)を紹介する。
完全長さのフィルタに対しては、CPNNを訓練するスティフェル多様体の部分多様体を提案する。
次に,所定のリプシッツ定数を持つcPNNを用いて信号画像の分解を行う方法について検討した。
- 参考スコア(独自算出の注目度): 0.225596179391365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce convolutional proximal neural networks (cPNNs),
which are by construction averaged operators. For filters of full length, we
propose a stochastic gradient descent algorithm on a submanifold of the Stiefel
manifold to train cPNNs. In case of filters with limited length, we design
algorithms for minimizing functionals that approximate the orthogonality
constraints imposed on the operators by penalizing the least squares distance
to the identity operator. Then, we investigate how scaled cPNNs with a
prescribed Lipschitz constant can be used for denoising signals and images,
where the achieved quality depends on the Lipschitz constant. Finally, we apply
cPNN based denoisers within a Plug-and-Play (PnP) framework and provide
convergence results for the corresponding PnP forward-backward splitting
algorithm based on an oracle construction.
- Abstract(参考訳): 本稿では,構築平均演算子である畳み込み近位ニューラルネットワーク(cPNN)を紹介する。
完全長さのフィルタに対して、Stiefel多様体の部分多様体上の確率勾配降下アルゴリズムを提案し、cPNNを訓練する。
有限長フィルタの場合、最小二乗距離を恒等演算子にペナルティすることで演算子に課される直交制約を近似する関数を最小化するためのアルゴリズムを設計する。
そこで, 所定のリプシッツ定数を持つcPNNを用いて信号や画像の分解を行い, 得られた品質はリプシッツ定数に依存する。
最後に, cPNN ベースのデノイザをPlug-and-Play (PnP) フレームワークに適用し, オラクル構造に基づく PnP 前方分割アルゴリズムの収束結果を提供する。
関連論文リスト
- LipKernel: Lipschitz-Bounded Convolutional Neural Networks via Dissipative Layers [0.0468732641979009]
本稿では,畳み込みニューラルネットワーク(CNN)の階層的パラメータ化を提案する。
提案手法は,2次元ロエサー型状態空間モデルを用いて,散逸型畳み込みカーネルを直接パラメータ化する。
提案手法を用いた実行時間は,最先端のリプシッツ有界ネットワークよりも桁違いに高速であることを示す。
論文 参考訳(メタデータ) (2024-10-29T17:20:14Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play ()メソッドは、ニューラルネットワーク演算子をデノナイジング演算子に置き換えることで、アルゴリズムによって、近位姿勢の逆問題を解決する。
このデノイザが実際に勾配関数に対応していることが示される。
論文 参考訳(メタデータ) (2022-01-31T14:05:20Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
最近の研究報告では、NTKレグレッションは、小規模データセットでトレーニングされた有限範囲のニューラルネットワークより優れている。
我々は、アークコサインカーネルの拡張をスケッチして、NTKの近距離入力スパーシティ時間近似アルゴリズムを設計する。
CNTKの特徴をトレーニングした線形回帰器が,CIFAR-10データセット上での正確なCNTKの精度と150倍の高速化を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-15T04:44:52Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
線形逆問題において擬微分演算子(Psi$DOs)を学習するための新しい畳み込みニューラルネットワーク(CNN)を提案する。
フォワード演算子のより一般的な仮定の下では、ISTAの展開された反復はCNNの逐次的な層として解釈できることを示す。
特に、LA-CTの場合、アップスケーリング、ダウンスケーリング、畳み込みの操作は、制限角X線変換の畳み込み特性とウェーブレット系を定義する基本特性を組み合わせることで正確に決定できることを示す。
論文 参考訳(メタデータ) (2020-06-02T14:03:41Z) - Lipschitz constant estimation of Neural Networks via sparse polynomial
optimization [47.596834444042685]
LiPoptは、ニューラルネットワークのリプシッツ定数上のより厳密な上限を計算するためのフレームワークである。
ネットワークの疎結合性を利用して、ネットワークの複雑さを大幅に軽減する方法を示す。
ランダムな重みを持つネットワークと、MNISTで訓練されたネットワークで実験を行う。
論文 参考訳(メタデータ) (2020-04-18T18:55:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。