Soliton trains after interaction quenches in Bose mixtures
- URL: http://arxiv.org/abs/2011.02613v2
- Date: Wed, 3 Mar 2021 11:27:49 GMT
- Title: Soliton trains after interaction quenches in Bose mixtures
- Authors: A. Cidrim, L. Salasnich, T. Macr\`i
- Abstract summary: We investigate the quench dynamics of a two-component Bose mixture and study the onset of modulational instability.
We provide an analytical estimate of the number of solitons at long times after the quench for each of the two components.
We also explain the significantly different soliton dynamics in a realistic experimental homonuclear potassium mixture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the quench dynamics of a two-component Bose mixture and study
the onset of modulational instability, which leads the system far from
equilibrium. Analogous to the single-component counterpart, this phenomenon
results in the creation of trains of bright solitons. We provide an analytical
estimate of the number of solitons at long times after the quench for each of
the two components based on the most unstable mode of the Bogoliubov spectrum,
which agrees well with our simulations for quenches to the weak attractive
regime when the two components possess equal intraspecies interactions and loss
rates. We also explain the significantly different soliton dynamics in a
realistic experimental homonuclear potassium mixture in terms of different
intraspecies interaction and loss rates. We investigate the quench dynamics of
the particle number of each component estimating the characteristic time for
the appearance of modulational instability for a variety of interaction
strengths and loss rates. Finally, we evaluate the influence of the
beyond-mean-field contribution, which is crucial for the ground-state
properties of the mixture, in the quench dynamics for both the evolution of the
particle number and the radial width of the mixture. In particular, even for
quenches to strongly attractive effective interactions, we do not observe the
dynamical formation of solitonic droplets.
Related papers
- Bound impurities in a one-dimensional Bose lattice gas: low-energy properties and quench-induced dynamics [0.0]
We study two mobile bosonic impurities immersed in a one-dimensional optical lattice and interacting with a bosonic bath.
We consider the branch of repulsive interactions that induce the formation of bound impurities, akin to the bipolaron problem.
arXiv Detail & Related papers (2024-02-05T15:01:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sudden quench of harmonically trapped mass-imbalanced fermions [0.0]
Two-component mass-imbalanced few-fermion systems confined in a harmonic trap are studied.
The role of mass imbalance and particle number imbalance on the system's evolution stability is investigated.
The results may have implications for upcoming experiments on fermionic mixtures with a well-defined and small number of particles.
arXiv Detail & Related papers (2022-09-13T10:33:10Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Quantum Coherent States of Interacting Bose-Fermi Mixtures in One
Dimension [68.8204255655161]
We study two-component atomic gas mixtures in one dimension involving both bosons and fermions.
We report a rich variety of coherent ground-state phases that vary with the intrinsic and relative strength of the interactions.
arXiv Detail & Related papers (2021-10-26T17:52:37Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Interplay between coherent and dissipative dynamics of bosonic doublons
in an optical lattice [0.0]
We study how three-body losses contribute to the lattice dynamics.
We observe rapid break-up of bound pairs for weak interactions, and for stronger interactions we see doublon decay rates that are asymmetric.
arXiv Detail & Related papers (2020-05-19T21:31:59Z) - Density dynamics in the mass-imbalanced Hubbard chain [0.0]
We consider two mutually interacting fermionic particle species on a one-dimensional lattice.
We study how the mass ratio $eta$ between the two species affects the dynamics of the particles.
arXiv Detail & Related papers (2020-04-28T15:38:02Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Many-body effects on second-order phase transitions in spinor
Bose-Einstein condensates and breathing dynamics [0.0]
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas.
It is found that the boundaries of the associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and anti-ferromagnetic spin-spin interactions.
We demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which can be tuned either via the linear Zeeman term or the quench amplitude.
arXiv Detail & Related papers (2020-04-17T10:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.