Deep tree-ensembles for multi-output prediction
- URL: http://arxiv.org/abs/2011.02829v2
- Date: Tue, 10 Aug 2021 13:30:00 GMT
- Title: Deep tree-ensembles for multi-output prediction
- Authors: Felipe Kenji Nakano, Konstantinos Pliakos, Celine Vens
- Abstract summary: We propose a novel deep tree-ensemble (DTE) model, where every layer enriches the original feature set with a representation learning component based on tree-embeddings.
We specifically focus on two structured output prediction tasks, namely multi-label classification and multi-target regression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep neural networks have expanded the state-of-art in various
scientific fields and provided solutions to long standing problems across
multiple application domains. Nevertheless, they also suffer from weaknesses
since their optimal performance depends on massive amounts of training data and
the tuning of an extended number of parameters. As a countermeasure, some
deep-forest methods have been recently proposed, as efficient and low-scale
solutions. Despite that, these approaches simply employ label classification
probabilities as induced features and primarily focus on traditional
classification and regression tasks, leaving multi-output prediction
under-explored. Moreover, recent work has demonstrated that tree-embeddings are
highly representative, especially in structured output prediction. In this
direction, we propose a novel deep tree-ensemble (DTE) model, where every layer
enriches the original feature set with a representation learning component
based on tree-embeddings. In this paper, we specifically focus on two
structured output prediction tasks, namely multi-label classification and
multi-target regression. We conducted experiments using multiple benchmark
datasets and the obtained results confirm that our method provides superior
results to state-of-the-art methods in both tasks.
Related papers
- Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
We introduce Enhanced Random Forests, an extension of vanilla Random Forests with extra functionalities and adaptive sample and model weighting.
We develop an iterative algorithm for adapting the training sample weights, by favoring the hardest examples, and an approach for finding personalized tree weighting schemes for each new sample.
Our method significantly improves upon regular Random Forests across 15 different binary classification datasets and considerably outperforms other tree methods, including XGBoost.
arXiv Detail & Related papers (2024-10-24T23:22:33Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
We revisit the classic Neighborhood Component Analysis (NCA), designed to learn a linear projection that captures semantic similarities between instances.
We find that minor modifications, such as adjustments to the learning objectives and the integration of deep learning architectures, significantly enhance NCA's performance.
We also introduce a neighbor sampling strategy that improves both the efficiency and predictive accuracy of our proposed ModernNCA.
arXiv Detail & Related papers (2024-07-03T16:38:57Z) - Implicit Generative Prior for Bayesian Neural Networks [8.013264410621357]
We propose a novel neural adaptive empirical Bayes (NA-EB) framework for complex data structures.
The proposed NA-EB framework combines variational inference with a gradient ascent algorithm.
We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks.
arXiv Detail & Related papers (2024-04-27T21:00:38Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - Layer Ensembles [95.42181254494287]
We introduce a method for uncertainty estimation that considers a set of independent categorical distributions for each layer of the network.
We show that the method can be further improved by ranking samples, resulting in models that require less memory and time to run.
arXiv Detail & Related papers (2022-10-10T17:52:47Z) - Adaptive Affinity Loss and Erroneous Pseudo-Label Refinement for Weakly
Supervised Semantic Segmentation [48.294903659573585]
In this paper, we propose to embed affinity learning of multi-stage approaches in a single-stage model.
A deep neural network is used to deliver comprehensive semantic information in the training phase.
Experiments are conducted on the PASCAL VOC 2012 dataset to evaluate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2021-08-03T07:48:33Z) - Feature Ranking for Semi-supervised Learning [3.1380888953704984]
We propose semi-supervised learning of feature ranking.
To the best of our knowledge, this is the first work that treats the task of feature ranking within the semi-supervised structured output prediction context.
The evaluation across 38 benchmark datasets reveals the following: Random Forests perform the best for the classification-like tasks, while for the regression-like tasks Extra-PCTs perform the best.
arXiv Detail & Related papers (2020-08-10T07:50:50Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.