Implicit Generative Prior for Bayesian Neural Networks
- URL: http://arxiv.org/abs/2404.18008v1
- Date: Sat, 27 Apr 2024 21:00:38 GMT
- Title: Implicit Generative Prior for Bayesian Neural Networks
- Authors: Yijia Liu, Xiao Wang,
- Abstract summary: We propose a novel neural adaptive empirical Bayes (NA-EB) framework for complex data structures.
The proposed NA-EB framework combines variational inference with a gradient ascent algorithm.
We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks.
- Score: 8.013264410621357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive uncertainty quantification is crucial for reliable decision-making in various applied domains. Bayesian neural networks offer a powerful framework for this task. However, defining meaningful priors and ensuring computational efficiency remain significant challenges, especially for complex real-world applications. This paper addresses these challenges by proposing a novel neural adaptive empirical Bayes (NA-EB) framework. NA-EB leverages a class of implicit generative priors derived from low-dimensional distributions. This allows for efficient handling of complex data structures and effective capture of underlying relationships in real-world datasets. The proposed NA-EB framework combines variational inference with a gradient ascent algorithm. This enables simultaneous hyperparameter selection and approximation of the posterior distribution, leading to improved computational efficiency. We establish the theoretical foundation of the framework through posterior and classification consistency. We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks, including the two-spiral problem, regression, 10 UCI datasets, and image classification tasks on both MNIST and CIFAR-10 datasets. The results of our experiments highlight the superiority of our proposed framework over existing methods, such as sparse variational Bayesian and generative models, in terms of prediction accuracy and uncertainty quantification.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features [1.2289361708127877]
We propose a novel hierarchical likelihood learning framework for introducing gamma random effects into a Poisson deep neural network.
The proposed method simultaneously yields maximum likelihood estimators for fixed parameters and best unbiased predictors for random effects.
State-of-the-art network architectures can be easily implemented into the proposed h-likelihood framework.
arXiv Detail & Related papers (2023-10-18T01:54:48Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks.
In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors.
We develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution.
arXiv Detail & Related papers (2020-11-15T03:27:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.