Implicit Generative Prior for Bayesian Neural Networks
- URL: http://arxiv.org/abs/2404.18008v1
- Date: Sat, 27 Apr 2024 21:00:38 GMT
- Title: Implicit Generative Prior for Bayesian Neural Networks
- Authors: Yijia Liu, Xiao Wang,
- Abstract summary: We propose a novel neural adaptive empirical Bayes (NA-EB) framework for complex data structures.
The proposed NA-EB framework combines variational inference with a gradient ascent algorithm.
We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks.
- Score: 8.013264410621357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive uncertainty quantification is crucial for reliable decision-making in various applied domains. Bayesian neural networks offer a powerful framework for this task. However, defining meaningful priors and ensuring computational efficiency remain significant challenges, especially for complex real-world applications. This paper addresses these challenges by proposing a novel neural adaptive empirical Bayes (NA-EB) framework. NA-EB leverages a class of implicit generative priors derived from low-dimensional distributions. This allows for efficient handling of complex data structures and effective capture of underlying relationships in real-world datasets. The proposed NA-EB framework combines variational inference with a gradient ascent algorithm. This enables simultaneous hyperparameter selection and approximation of the posterior distribution, leading to improved computational efficiency. We establish the theoretical foundation of the framework through posterior and classification consistency. We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks, including the two-spiral problem, regression, 10 UCI datasets, and image classification tasks on both MNIST and CIFAR-10 datasets. The results of our experiments highlight the superiority of our proposed framework over existing methods, such as sparse variational Bayesian and generative models, in terms of prediction accuracy and uncertainty quantification.
Related papers
- A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading [0.0]
In geotechnical engineering, models play a crucial role in describing soil behavior under varying loading conditions.
Data-driven deep learning (DL) models offer a promising alternative for developing predictive models.
When prediction is the primary focus, quantifying the predictive uncertainty of a trained DL model is crucial for informed decision-making.
arXiv Detail & Related papers (2025-01-17T10:15:03Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
We propose a novel structural entropy-guided probabilistic coding model, named SEPC.
We incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss.
Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC.
arXiv Detail & Related papers (2024-12-12T00:37:53Z) - Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features [1.2289361708127877]
We propose a novel hierarchical likelihood learning framework for introducing gamma random effects into a Poisson deep neural network.
The proposed method simultaneously yields maximum likelihood estimators for fixed parameters and best unbiased predictors for random effects.
State-of-the-art network architectures can be easily implemented into the proposed h-likelihood framework.
arXiv Detail & Related papers (2023-10-18T01:54:48Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Efficient Variational Inference for Sparse Deep Learning with
Theoretical Guarantee [20.294908538266867]
Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks.
In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors.
We develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution.
arXiv Detail & Related papers (2020-11-15T03:27:54Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.