論文の概要: Depth Self-Optimized Learning Toward Data Science
- arxiv url: http://arxiv.org/abs/2011.02842v2
- Date: Mon, 11 Jan 2021 11:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 12:41:29.527602
- Title: Depth Self-Optimized Learning Toward Data Science
- Title(参考訳): データサイエンスへの深層学習
- Authors: Ziqi Zhang
- Abstract要約: 本稿では,ANN深度自己設定と自己最適化の実現を目的とした,Depth Self-d Learning (DSOL) と呼ばれる2段階モデルを提案する。
実験では,IrisとBostonの住宅データセット上でDSOLを実行し,DSOLが良好に動作することを示した。
- 参考スコア(独自算出の注目度): 11.737768680279125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a two-stage model called Depth Self-Optimized Learning (DSOL),
which aims to realize ANN depth self-configuration, self-optimization as well
as ANN training without manual intervention. In the first stage of DSOL, it
will configure ANN of specific depth according to a specific dataset. In the
second stage, DSOL will continuously optimize ANN based on Reinforcement
Learning (RL). Finally, the optimal depth is returned to the first stage of
DSOL for training, so that DSOL can configure the appropriate ANN depth and
perform more reasonable optimization when processing similar datasets again. In
the experiment, we ran DSOL on the Iris and Boston housing datasets, and the
results showed that DSOL performed well. We have uploaded the experiment
records and code to our Github.
- Abstract(参考訳): 本稿では,ANNの深度自己設定,自己最適化,および手動による介入を伴わないANNトレーニングの実現を目的とした,Depth Self-Optimized Learning (DSOL)と呼ばれる2段階モデルを提案する。
DSOLの最初の段階では、特定のデータセットに従って特定の深さのANNを設定する。
第2段階では、DSOLは強化学習(RL)に基づいてANNを継続的に最適化する。
最後に、最適深度をトレーニング用DSOLの第1段階に戻すことにより、DSOLは適切なANN深度を設定し、類似したデータセットを再度処理する際により合理的な最適化を行うことができる。
実験では,IrisとBostonの住宅データセット上でDSOLを実行し,DSOLが良好に動作することを示した。
実験記録とコードをgithubにアップロードしました。
関連論文リスト
- Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
視覚言語モデル(VLM)のための新しいデータセット選択手法であるSelf-Filterを導入する。
第1段階では、VLMと共同で学習する訓練指導の難しさを評価するためのスコアリングネットワークを考案する。
第2段階では、トレーニングされたスコアネットを使用して、各命令の難易度を測定し、最も難しいサンプルを選択し、類似したサンプルをペナルティ化し、多様性を促進する。
論文 参考訳(メタデータ) (2024-02-19T20:08:48Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - LiDAR Meta Depth Completion [47.99004789132264]
本稿では,データパターンを用いてタスクネットワークを学習し,与えられた深度完了タスクを効果的に解決するメタ深度補完ネットワークを提案する。
一つのモデルを用いて、異なるLiDARパターンで訓練された非適応ベースラインよりも、はるかに優れた結果が得られる。
これらの利点は、異なるセンサーに単一の深度補完モデルの柔軟な展開を可能にする。
論文 参考訳(メタデータ) (2023-07-24T13:05:36Z) - Monocular Depth Estimation using Diffusion Models [39.27361388836347]
トレーニングデータにおけるノイズや不完全な深度マップに起因する問題に対処するイノベーションを導入する。
教師付き訓練におけるデータの可用性の限界に対処するために,自己教師付き画像-画像間翻訳タスクの事前学習を利用する。
我々のDepthGenモデルは、屋内のNYUデータセット上で、および屋外のKITTIデータセット上でのSOTA結果に近いSOTA性能を達成する。
論文 参考訳(メタデータ) (2023-02-28T18:08:21Z) - A Mixed Integer Programming Approach to Training Dense Neural Networks [0.0]
完全連結ANNの学習のための新しい混合整数プログラミング(MIP)法を提案する。
我々の定式化は、バイナリアクティベーションと修正線形ユニット(ReLU)アクティベーションANNの両方を考慮することができる。
また、モデル事前学習のために、ANNのレイヤー数を減少させる手法である層ワイドグリーディ手法を開発した。
論文 参考訳(メタデータ) (2022-01-03T15:53:51Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - ADAADepth: Adapting Data Augmentation and Attention for Self-Supervised
Monocular Depth Estimation [8.827921242078881]
深度向上を深度監督として活用し、正確で堅牢な深度を学習するADAAを提案します。
本稿では,リッチなコンテキスト特徴を学習し,さらに深度を向上するリレーショナル自己認識モジュールを提案する。
KITTI運転データセットの予測深度を評価し、最新の結果を実現します。
論文 参考訳(メタデータ) (2021-03-01T09:06:55Z) - Deep Retrieval: Learning A Retrievable Structure for Large-Scale
Recommendations [21.68175843347951]
本稿では,ユーザとイテムのインタラクションデータを用いて,検索可能な構造を直接学習するために,Deep Retrieval(DR)を提案する。
DRは、産業レコメンデーションシステムのために数億のアイテムをスケールで展開した最初の非ANNアルゴリズムの1つである。
論文 参考訳(メタデータ) (2020-07-12T06:23:51Z) - Don't Forget The Past: Recurrent Depth Estimation from Monocular Video [92.84498980104424]
私たちは3つの異なる種類の深さ推定を共通のフレームワークに組み込んだ。
提案手法は, 時系列の深度マップを生成する。
モノクロビデオにのみ適用したり、異なる種類のスパース深度パターンと組み合わせたりすることができる。
論文 参考訳(メタデータ) (2020-01-08T16:50:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。