論文の概要: End-to-end Deep Learning Methods for Automated Damage Detection in
Extreme Events at Various Scales
- arxiv url: http://arxiv.org/abs/2011.03098v1
- Date: Thu, 5 Nov 2020 21:21:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 11:48:20.903882
- Title: End-to-end Deep Learning Methods for Automated Damage Detection in
Extreme Events at Various Scales
- Title(参考訳): 各種規模における極端事象の自動損傷検出のためのエンドツーエンドディープラーニング手法
- Authors: Yongsheng Bai, Halil Sezen, Alper Yilmaz
- Abstract要約: Mask R-CNNは、地震などの極端な発生時に損傷を受ける可能性のある構造物やその構成要素の亀裂を自動的に検出するために提案され、試験されている。
我々は、トレーニングと検証のために2,021のラベル付き画像を用いた新しいデータセットをキュレートし、フィールドのひび割れ検出のためのエンドツーエンドのディープニューラルネットワークを見つけることを目的とした。
- 参考スコア(独自算出の注目度): 0.4297070083645048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust Mask R-CNN (Mask Regional Convolu-tional Neural Network) methods are
proposed and tested for automatic detection of cracks on structures or their
components that may be damaged during extreme events, such as earth-quakes. We
curated a new dataset with 2,021 labeled images for training and validation and
aimed to find end-to-end deep neural networks for crack detection in the field.
With data augmentation and parameters fine-tuning, Path Aggregation Network
(PANet) with spatial attention mechanisms and High-resolution Network (HRNet)
are introduced into Mask R-CNNs. The tests on three public datasets with low-
or high-resolution images demonstrate that the proposed methods can achieve a
big improvement over alternative networks, so the proposed method may be
sufficient for crack detection for a variety of scales in real applications.
- Abstract(参考訳): ロバストマスクr-cnn (mask regional convolu-tional neural network) 法を提案し,地球地震などの異常発生時に損傷する構造物やその構成要素のひび割れの自動検出法を検証した。
我々は、トレーニングと検証のために2,021のラベル付き画像を用いた新しいデータセットをキュレートし、フィールドのひび割れ検出のためのエンドツーエンドのディープニューラルネットワークを見つけることを目的とした。
空間的注意機構を備えたパス集約ネットワーク(PANet)と高分解能ネットワーク(HRNet)をMask R-CNNに導入した。
低解像度または高解像度の画像を持つ3つの公開データセットのテストは、提案手法が代替ネットワークよりも大きな改善を達成できることを示し、提案手法は、実アプリケーションにおける様々なスケールのクラック検出に十分である可能性がある。
関連論文リスト
- MicroCrackAttentionNeXt: Advancing Microcrack Detection in Wave Field Analysis Using Deep Neural Networks through Feature Visualization [1.0136215038345013]
本研究は,マイクロクラック検出のための非対称エンコーダデコーダネットワークであるSpAsE-Netに基づく。
多様体探索解析 (MDA) アルゴリズムを用いて特徴空間の可視化により, 種々の活性化・損失関数の影響を検討した。
最適化されたアーキテクチャとトレーニング手法は86.85%の精度を達成した。
論文 参考訳(メタデータ) (2024-11-15T07:50:01Z) - NAS-ASDet: An Adaptive Design Method for Surface Defect Detection
Network using Neural Architecture Search [5.640706784987607]
表面欠陥検出のためのネットワークを適応的に設計するためのNAS-ASDetと呼ばれる新しい手法を提案する。
まず、特徴分布を適応的に調整できる、洗練された業界に適した検索空間を設計する。
そして、より高速に探索空間を探索するために、深い監視機構を備えたプログレッシブ検索戦略を用いる。
論文 参考訳(メタデータ) (2023-11-18T03:15:45Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Engineering deep learning methods on automatic detection of damage in
infrastructure due to extreme events [0.38233569758620045]
本稿では,深層学習を用いた極端な事象における自動構造損傷検出(SDD)に関する実験的検討を行った。
最初の研究では、152層のResidual Network(ResNet)を用いて8つのSDDタスクで複数のクラスを分類する。
その結果,損傷検出の精度はセグメンテーションネットワークのみを用いた場合に比べて有意に向上した。
論文 参考訳(メタデータ) (2022-05-01T19:55:56Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
ドローンの画像はインフラ表面の欠陥の自動検査にますます使われている。
本稿では,階層型畳み込みニューラルネットワークを用いた深層学習手法を提案する。
提案手法は, 道路, 橋, 舗装の表面ひび割れの同定に応用されている。
論文 参考訳(メタデータ) (2021-04-21T13:07:58Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
プレゼンテーションアタック検出(PAD)は研究コミュニティから大きな注目を集めている。
我々は、統一されたニューラルネットワークアーキテクチャにおいて、幅広い機能と深い機能の両方を融合することで、この問題に対処する。
この手順は、ROSE-Youtu、SiW、NUAA Imposterなどのさまざまなスプーフィングデータセットで行われます。
論文 参考訳(メタデータ) (2021-01-12T21:20:09Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。